
Summary Information Retrieval

Moritz Hoffmann

February 4, 2011

The classic search model

Corpus

TASK

Info Need

Query

Verbal

form

Results

SEARCH

ENGINE

Query

Refinement

Get rid of mice in a
politically correct way

Info about removing mice
without killing them

How do I trap mice alive?

mouse trap

Misconception?

Mistranslation?

Misformulation?

Figure 1: The classic search model.

1 Introduction

Information Retrieval (IR) is finding material (usu-
ally documents) of an unstructured nature (usually
text) that satisfies an information need from within
large collections (usually stored on computers).

Data can be structured (relational data bases),
semi-structured (XML) and unstructured as in free
text search.

Basic assumptions for Information Retrieval Sys-
tems:

• Collection: fixed size set of documents.

• Goal: Retrieve documents with information
that is relevant to the user to complete a task.

Quality constraints for an Information Retrieval
System:

• Precision: Fraction of the retrieved docu-
ments that are relevant to the user.

• Recall: Fraction of relevant documents in col-
lection, which are recalled.

Precision and recall is always a trade off, it is easy
to set one of them to 1 and the other to 0, but
being good at both is difficult. It depends on the
use case whether to optimize for precision or recall.

1.1 Index

To store an index, one needs a mapping from words
to texts the words occur in.

Term-document matrix Store words and docu-
ments as matrix columns and rows. Put a 1
when a word occurs in a document, otherwise
a 0. Leads to very sparse data. Can answer
Boolean queries using the matrix.

Incidence vectors For each word, store a vector
which document contains this word. If docu-
ment n contains the word, put a 1 at the nth

position in the vector. Can use bit operators
to compute a query’s result.

It is not possible to store an incidence matrix as
it requires too much space. Better use an inverted
index. For each word of the dictionary, store the
documents they contain it (postings). Each docu-
ment is identified by an ID.
Wordi → Document1 . . . Documentn

The postings can be a linked list of document IDs,
which are sorted. For each word, the frequency
can also be stored.

Construction of an inverted index:

1. Tokenize: Split the input documents into sep-
arate words. Remove punctuation.

2. Linguistic analysis: correct case, remove plu-
rals etc.

3. Indexer: insert words into inverted index.

To search an inverted index, the postings of the
terms need to be merged. The running time is in
O(n + m), for n and m being the posting list’s
length. Here, it is required that the postings are
sorted. It is also possible to do an N -way merge.

1.2 Discussion of Boolean Search

• No ranked results.

• Term frequency not relevant to result.

• No phrase search.

1

2.4 Thesauri and Soundex 2 BUILDING THE INDEX

1.3 Terms

Clustering Given a set of documents, group them
into clusters based on their contents.

Classification Given a set of topics, plus a new
document, decide what topics it belongs to.

Ranking Learn how to best order a set of docu-
ments, i.e the result of a search.

1.4 Sophisticated Information Retrieval

• Cross-language retrieval.

• Question answering.

• Summarization.

• Text mining.

2 Building the Index

The following steps are applied on documents
when building an index, and on a query when
searching the index.

2.1 Tokenization

The input consists of documents, the output are
tokens. Tokens are sequences of characters, which
may end up in the index after further filtering.
During this phase, punctuation is removed. Dif-
ficulties arise from terms that contain punctuation
(’s, -) or consist of several words (San Francisco).
Numbers are problematic as well, as they often
contain punctuation. Older IR systems did not
index numbers. In some language, there are com-
pound words that should end up in several tokens
(especially in German). Can use a compound split-
ter to avoid problem. Other languages have no
spaces at all (Japanese or Chinese).

2.2 Stop words

Remove common words from the index. The idea
is that words without semantic meaning do not
need to be put into the index. Can save a lot of
space, but reduces quality of index. Today, it is
often compensated by good optimization.

2.3 Normalization

Match different forms of a word to one common
form, like U.S.A to USA. Remove accents, um-
lauts. Care must be taken to only work on the
source language: German MIT 6= English MIT.
Case folding to get one common spelling.

As an alternative, it is possible to add all ex-
pansions to a search in order to find all different
spellings and cases for a term. This can be more
powerful, but less efficient.

2.4 Thesauri and Soundex

A thesaurus can be used to add words to a search
query the user has not entered. This way, syn-
onyms and homonyms are handled automatically.
Soundex can be used to search for terms that
“sound” similarly.

2.5 Lemmatization

Lemmatization deals with reducing inflection and
variants to one base form (am, are, is → be), it
reduces words to their form in a dictionary.

2.6 Stemming

Reduce words to their stem by cutting off ends that
contain no or little information. It is a crude and
language dependent way to decrease the number
of terms in the index. The best known algorithm
for English is Porter’s algorithm. The algorithm
has a set of rules to shorten suffixes while in every
iteration the longest suffix is shortened. This pro-
cess is repeated a limited number of times (about
5 times).

Stemming is language dependent and thus intro-
duces problems. It reduces precision and enhances
recall. Its usefulness depends on the language it is
applied on.

2.7 Data Structures

To quickly get results from inverted indexes, spe-
cial data structures are required.

A simple and yet effective approach is to use skip
lists or points. In this data structure, every couple
of nodes a special node with two outgoing edges
is stored. The additional edge points to an ele-
ment further down the list. A simple heuristic is
to use

√
n skip pointers for a list with n elements.

Modifications are problematic for this data struc-
ture. Today, the additional memory requirement
may outweigh the faster access.

2.8 Phrase Queries

A phrase query asks for terms occurring in a spe-
cial order. For this, it is not enough to store post-
ing lists.

2

4.1 Permuterm 5 SPELLING CORRECTION

Biword index Index consecutive pairs of words in-
stead of single words. This allows two-word
phrase queries, but fails partly for longer
queries as it can produce false positives. Also,
the index gets much bigger as all word pairs
end up in the index. It is not possible to an-
swer proximity queries with biword indexes.
They are not commonly used.

Positional index Adapt posting lists to not only
store the document a term occurs in, but also
store the positions of individual occurrences.
The index can be queried by an extended
merging schema. It is also possible to answer
proximity queries with it.

For English, the index tends to be 2 to 4 times
as large as the non positional index, its size is
about 35% to 50% of the input’s size.

3 Dictionary structures

The dictionary consists of tokens, which map to a
set of documents. Due to the size of the index, it is
required to keep the dictionary small and efficient.
We have several options to store the terms and to
store the postings.

3.1 Term structure

The terms can be stored in a list or array structure,
in a tree or as hashed values.

Hashes Instead of storing the whole term in the
dictionary, store only a hashed equivalent of a
term. This leads to faster look up time, but it
is not possible to search for minor differences
or to do a prefix search.

Tree Store terms in binary or B-tree. As there
exists a standard ordering for terms, we can
use trees. Using trees, we can answer pre-
fix queries. The downside is that queries are
slower (order O(logN) if balanced) and that
restructuring is expensive.

4 Wild-card Queries

Wild card queries allow to search the index for
terms with an undetermined component. For ex-
ample, the query mon* would match all terms start-
ing with mon. With trees, this is equivalent to the
range search of m: mon ≤ m < moo. For suf-
fix searches, an additional tree with terms stored
backwards is required.

For queries with a wild card in the middle co*tion,
a merge of the results of the two queries co* and
*tion would be necessary.

4.1 Permuterm

The permuterm index can answer more complex
wild-card queries efficiently. For each word in the
index, store its permutations according to the fol-
lowing pattern:

Word hello

Permutation hello$, ello$h, llohe, lohel, o$hell,
$hello.

Query Look up Query Look up

X X$ X* X*

X X$ *X* X*

X*Y Y$X*

X*Y*Z Y$X* merge with Z$*
Note: merging two results has to work, as the per-
muterm index refers to terms, not documents!

Table 1: Permuterm query modification.

Permuterm indexes are about four times as big as
normal indexes (in English).

4.2 Bigram indexes

A k-gram is a sequence of k characters. For the
bigram (or k-gram) index, all k-grams are enumer-
ated. Word boundaries are replaced by a special
symbol. A second inverted index from bigram to
dictionary term keeps the document association.

Input This is an example.

Bigram t, th, hi, is, s, i, is, s, a, an, n, $e,
ex, xa, am, mp, pl, le, e$

For each bigram, a list of words is stored:
th → this , there , . . ., i.e. all words containing

th.

To query the index, the query term has to be split
in bigrams. To search for mon*, we search for $m

AND mo AND on. The results are filtered for false-
positives (e.g. moon) and the terms are then looked
up in the term-document index.

This approach is fast and space-efficient. However,
it is expensive to evaluate queries with many wild-
cards.

5 Spelling correction

All documents have spelling errors, especially this
created by OCR software. For OCR software,

3

5.5 Context-sensitive Spell Correction 6 COMPRESSION

other errors have to be corrected than when a text
is typed.

Two principal uses:

• Correct documents to have a clean dictionary.

• Correct queries

Two flavors:

• Correct isolated words for their own mis-
spelling.

• Apply context-sensitive spelling correction.

Two strategies:

• Retrieve documents indexed by the correct
spelling.

• Return several suggested alternative queries
with the correct spelling.

For isolated word correction, a lexicon can be used.
The lexicon is either a standard lexicon for a lan-
guage (Webster’s, Duden) or generated from the
text corpus. The task for a lexicon is to find the
term word given an input term.

5.1 Edit Distance

For two strings, compute the number of edits to
transform one to the other. Operations are insert,
delete, replace and optionally transpose. Can be
solved by dynamic programming.

5.2 Weighted Edit Distance

Same as edit distance, only that weight of opera-
tion depends on character weight. Similar charac-
ters have a smaller edit distance than very different
characters (compare n to m and n to q). Can also
be solved by dynamic programming with a weight
matrix as additional input.

5.3 Using Edit Distance

To find a closest word, first generate all words with
the edit distance up to n and intersect this gener-
ated list with all known (and correct) words. Show
remaining terms as suggestion to the user. Can be
automated by picking best term.

Computing the edit distance is slow and expensive.

5.4 n-gram Overlap

First, enumerate all n-grams in the query, then
retrieve all terms matching any of the n-grams.
Use a threshold to limit the number of matching
terms (like 2 of 3 n-grams must match).

5.4.1 Jaccard-Coefficient

The Jaccard index can be used to calculate the
similarity of two sets of n-grams:

J(A,B) =
|A ∩B|
|A ∪B|

It is 1 if both sets are equal and 0 when they are
disjoint. Define a threshold to accept a match or
not.

5.5 Context-sensitive Spell Correction

Hit based spelling correction: Generate a list of
close words and search for each query with the
word alternative. Return the alternative that gets
a lot of hits.

Biword spelling correction: Break phrase query
into biwords and look for biwords that only require
one word to be corrected. Enumerate matches and
rank them.

5.6 General Issues

Spelling correction is used to present alternative
to the user. Heuristics have to be used to retrieve
the best match. Generally, spelling correction is
computationally expensive, but can be optimized
a lot.

5.7 Soundex

Class of heuristics to expand queries into their
phonetic equivalents. The algorithm reduces ev-
ery word into a 4 character reduced form. The
algorithm is not very useful for IR, although most
data base vendors offer it.

6 Compression

Compression is required to save resources, mainly
disk space and memory. Its premise is that decom-
pressing data is faster than retrieving it from disk
and cheaper than keeping it in memory.

6.1 Lossy or Lossless?

Lossless compression keeps all information, while
lossy compression discards some. Many of the text
processing steps are lossy, like stemming, case fold-
ing and stop words.

4

7 RANKING

6.2 Vocabulary vs. Collection Size

To estimate the number of unique terms in a set of
documents, we can apply Heaps’ law. It states that
the number of terms M depends on the number
of tokens T in the collection and 30 ≤ k ≤ 100,
b ≈ 0.5:

M = k · T b.

6.3 Collection Frequency — Zipf’s law

The CF is the number of occurrences of a term in
a collection of documents. Zipf’s law states that
the ith most frequent term has a frequency pro-
portional to i−1. cfi is the collection frequency of
term i.

6.4 Compression on Dictionary

The dictionary is a crucial part of the inverted in-
dex, which is accessed very often. Thus it should
be kept in memory.

First, we assume the dictionary is an array of fixed-
width records, with the term, its frequency and a
pointer to the posting list.

As a string Instead of storing the term in the
record, store a pointer to a position in a long
string with all terms appended to each other.

Blocking Store pointers to every kth string. In the
dictionary string, the word length needs to be
stored.

Front encoding Sorted words have a long com-
mon prefix, thus only store differences for last
k − 1 elements in a block of k. Related to
general string compression.

6.5 Compression on Posting Lists

Posting lists should also be small to retrieve hits
from the IR system. A posting list is typically ten
times larger than the dictionary.

Store offsets Instead of storing each document
ID, store the offset to the next to get smaller
numbers.

Variable length encoding The length of docu-
ment IDs differs a lot when storing offsets, so
it is desirable to store variable length records.

Variable Byte (VB) For each byte, dedicate one
bit as continuation value. If the number g ≤
127, encode it and set c = 1, otherwise encode
lower 7 bits and iterate on the higher bits.
Instead of bytes, nibbles or other units can be
used. VB is uniquely prefix decodable.

Unary code Represent n as n 1 and a 0.

Gamma code Store length of binary encoded
number plus the binary number without its
leading 1. Example: 13 becomes 1110 101.

For number G it requires 2 · blogGc + 1 bits.
Gamma code is uniquely prefix decodable.
Seldom used to to machine constraints on
word boundaries.

7 Ranking

7.1 Ranked Retrieval

Tries to overcome limitations imposed by Boolean
queries, like too many or few results. In ranked re-
trieval, the IR system returns the top ranked doc-
uments with respect to a query. Queries are free
text rather than expressions in some language (like
Boolean queries). If the ranking algorithm works,
large result sets are not a problem as only the top
ranked results are returned.

To calculate the rank, assign a score ∈ [0, 1] to each
document in a result set and order it by the score.
The score describes how well document and query
match.

One-term queries: score 0 for documents not con-
taining the term, and higher the more frequent
the term is used. A simple measurement is the
Jaccard-coefficient, but it has problems as it de-
pends on document and query length and ignores
frequencies.

Term Frequency The term frequency tft,d of term
t and document d is defined as the number of
times that t occurs in d.

Log Term frequency Instead of using a propor-
tional scale, use the logarithm of the weight:

tfwt,d =

{
1 + log tft,d tft,d > 0

0 otherwise

The score s for a document-query pair (d, q)
is defined as follows:

s =
∑
t∈q∩d

1 + log tft,d.

Document Frequency Idea: Rare terms are more
informative than frequent terms. Let the doc-
ument frequency dft be the number of docu-
ments containing term t. N is the number of
documents. The inverse document frequency
idft then determines how seldom a term oc-
curs:

idft = log
N

dft
.

5

8.2 Centroids 8 AUGMENTATION

td-idf Combine term frequency and document fre-
quency. Measurement increases with occur-
rences of a term within a document and the
rarity in the collection:

wt,d = (1 + log tft,d) · log
N

dft
.

Score The score is the td-idf over all terms in the
document-query pair (d, q):

score(q, d) =
∑
t∈q∩d

wt,d

Document Vectors We can now represent each
document by a vector of td-idf weights: R|V |.

Query Vectors We can either represent queries
as vectors in the vector space or rank doc-
uments according to their proximity to the
query space.

Vector space proximity Distance between two
points. Euclidean distance is a bad choice as
it is large for vectors of different length. In-
stead, use an angle. First, the vectors need to
be length-normalized, then we can calculate
the cosine between the two vectors:

‖ #»x‖2 =

√∑
i
x2i

and

cos(#»q ,
#»

d) =
#»q · #»

d

| #»q | · | #»d |
.

If the vectors are length-normalized, the co-
sine is simply the dot product:

cos(#»q ,
#»

d) = #»q · #»

d =

|V |∑
i=1

qi · di.

For vector space ranking, represent each document
and query as a tf-idf vector. Then compute the co-
sine similarity score for the query vector and each
document vector. Rank the documents according
to the score and return the top k documents to the
user.

8 Augmentation

8.1 Relevance feedback

After showing the results to the user, the user se-
lects documents as relevant or not. The system
uses this information to compute a better result.
Idea: help the user formulating better queries.

8.2 Centroids

A centroid #»µ(C) is the center of mass of a set C
of points:

#»µ(C) =
1

|C|
∑
d∈C

#»

d .

8.3 Rocchio Algorithm

Seek the query #»q opt that maximizes:

#»q opt = arg max
[

cos(#»q , #»µ(Cr)

− cos(#»q , #»µ(Cnr)
]
.

Problem: it is unknown what documents are truly
relevant. If we know what documents are relevant,
we can use a variant of Rocchio’s algorithm:

#»qm = α #»q 0

+ β
1

|Dr|
∑

#»
d j∈Dr

#»

d j − γ
1

|Dnr|
∑

#»
d j∈Dnr

#»

d j .

Dr and Dnr are the sets of relevant and non-
relevant documents, #»qm is the modified query vec-
tor, #»q 0 the original, and α, β, γ are hand chosen
weights. #»qm converges to n optimal solutions. For
a high number of judged documents, increase β/γ.
Negative weights have to be set to 0, positive feed-
back is more valuable than negative (set γ < β).
Many systems do not allow negative feedback.

8.3.1 Assumptions

1. User has sufficient knowledge for initial query.
Problems include misspellings, search lan-
guage, vocabulary mismatch.

2. Relevance prototypes are “well-behaved”. Re-
quires term distribution in relevant docu-
ments to be similar and term distribution in
non-relevant documents to be different from
relevant documents. Problems include differ-
ent names of the same thing, contradicting
government policies.

8.4 Problems with Relevance Feedback

Long queries slow down the search process, which
leads to long response times, thus higher costs.
A solution is to limit the number of terms in a
query. Users are reluctant to provide explicit feed-
back. Relevance feedback sometimes makes search
results hard to understand (Why was this docu-
ment returned?)

Relevance feedback is offered by some search en-
gines, but hardly used by users.

6

9.2 Difficulties 10 CLASSIFICATION

8.5 Query Expansion

Idea: Add additional input on words or phrases.
This can be done by adding terms from a the-
saurus or by analyzing the result set to derive more
terms. By adding terms to a query, we risk a sig-
nificant decrease of precision. Also, maintaining a
thesaurus manually is very costly.

8.5.1 Automatic Thesaurus Generation

A thesaurus lists words that are similar to each
other. There are two general approaches to gener-
ate a thesaurus:

• Two words are similar if they co-occur with
similar words. (more robust)

• Two words are similar if they occur in a given
grammatical relation with the same words.
(more accurate)

9 Evaluating Search Engines

• How fast does it index? Documents per hour,
with average size.

• How fast does it search? Latency as a function
of index size.

• Expressiveness of query language.

• User interface.

9.1 Precision and Recall

For a set of documents and a query, there are rele-
vant and non-relevant documents. Some of the rel-
evant are retrieved, and some of the non-relevant
as well. See table 2 for more information.

Precision Fraction of retrieved documents that
are relevant, i.e.

Pr [relevant|retrieved] = TP/(TP + FP).

Precision typically decreases when returning
more documents or when recall increases.

Recall Fraction of relevant documents that are re-
trieved, i.e.

Pr [retrieved|relevant] = TP/(TP + FN).

Recall is 1 when returning all documents, and
it is non-decreasing in the number of docu-
ments returned.

Accuracy Fraction of classifications that are cor-
rect. Not commonly used in IR.

(TP + TN)/(TP + FP + FN + TN)

Relevant Non-relevant

Retrieved TP FP

Not retrieved FN TN

Table 2: Precision and Recall

52

A precision-recall curve

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Recall

P
re
c
is
io
n

Sec. 8.4

Figure 2: Precision-recall curve

9.1.1 F Measure

The F measure is the weighted harmonic mean. It
takes both precision and recall into account:

F =
1

α 1
P + (1− α) 1

R

=
(β2 + 1)PR

β2P +R

Typically, the F1 measure is used, which is ob-
tained by settings β = 1 or α = 1/2.

9.2 Difficulties

It is hard to test the precision and recall of a
search engine. Testing requires a test collection,
with human classification. IR systems have prob-
lems with dealing with collections from different
authors. Also, relevance is not the only measure
for the quality of a search engine. The prob-
lems include duplicates and redundant informa-
tion. Marginal relevance is a better measure of
utility for the user. Use A/B testing to test the
effectiveness of new features by redirect a small
amount of users (1%) to a new engine and com-
pare click through results.

To evaluate a search engine, draw a precision-recall
curve. See figure 2 for an example.

10 Classification

For a description of an instance d ∈ X and a fixed
set of classes C determine the category of a doc-

7

10.5 k-nearest Neighbors, kNN 10 CLASSIFICATION

ument d: γ(d) ∈ C, where γ(d) is a classification
function whose domain is X and whose range is C.

For supervised classification, a training set D of
labeled documents with each document (d, c) ∈
X×C, determine a learning method for a learning
classifier γ : X → C.

10.1 Classification Methods

Manual Classify documents manually. Very effi-
cient if done by experts, but does not scale.
Very good for small problems and small
teams.

Automatic Classification based on hand-coded
rules. High accuracy reached for good filters
and if filters are maintained by experts. Build-
ing and maintaining rules is expensive.

Supervised Machine learning. Examples are k-
nearest Neighbors, Näıve Bayes and Support-
Vector Machines. Requires hand-classified
training data.

10.2 Probabilistic relevance feedback

Let tk be a term, Dr be the set of relevant doc-
uments, Drk be the subset that contains tk, Dnr

the set of known irrelevant documents and Dknr

the subset of irrelevant documents containing tg.
Then we can apply Bayes’ theorem:

Pr[tk|R] =
|Drk|
|Dr|

Pr[tk|NR] =
|Dnrk|
|Dnr|

To be continued at IR 7 page 15.

10.3 Näıve Bayes

Classification based on prior weights of class and
conditional parameters indicating the relative fre-
quency of cj (P are positions):

cNB = arg max
cj∈C

[
log Pr(cj) +

∑
i∈P

log Pr(xi|cj)

]

10.4 Rocchio Classification

Again, we represent documents as vectors in a
highly dimensional vector space. Documents of
the same class form a contiguous region and docu-
ments from different ones should not overlap. We
can use relevance feedback for text classification,

as it decides whether a document is contained in a
class or not. We use td-idf vectors. As a starting
point we use centroids for pre-defined classes. The
test is done using cosine similarity.

The prototype (centroid) can be calculated by
summing up all members of a class. The vector’s
length is irrelevant for cosine similarity. Classifi-
cation is based on similarity to class prototype.

10.5 k-nearest Neighbors, kNN

The task is to classify a document d into a class
c. Define the k-neighborhood N as the k nearest
neighbors of d. Count the number of documents i
in N that belong to c and estimate Pr[c|d] as i/k.
Choose the class arg maxc Pr[c|d].

kNN is close to optimal. Error rate is less than
twice the Bayes error rate as both query and train-
ing data contribute to error. Using 1NN is subject
to errors as one could find a single atypical exam-
ple or noise in a category. Usually, one chooses
odd k to avoid ties, like 3 or 5.

NN depends on a distance metric, one can use Eu-
clidean distance, Hamming distance (number of
different features) or cosine similarity.

Finding the nearest neighbors requires to scan
through all documents, O(|D|). This can be opti-
mized by only comparing against the training data
of size B: O(B · |Vt|) and B � |D|.
kNN scales well with a large number of documents,
there is no feature selection and training neces-
sary, it is very accurate, but classes can influence
each other and it may be expensive at testing time.
Also, scores can be hard to convert to probabilities.

Näıve Bayes has a low variance and high bias. kNN
has a high variance and a low bias. One has to
trade off variance≈capacity and bias.

10.6 Linear classifiers and classification

For a two class classification, we could define a sur-
face in the hyper space to separate the two classes.
The hyper plane can be calculated iteratively, but
there exist many solutions.

A hyper plane is defined as

M∑
i=1

widi = θ.

For Rocchio, we use

w = #»µ(c1)− #»µ(c2)

θ = 1/2 · (| #»µ(c1)|2 − | #»µ(c2)|2).

8

11.1 Algorithms 11 CLUSTERING

For two class Näıve Bayes, we compute the log
odds for a class C:

log
Pr[C|d]

Pr[C|d]
= log

Pr[C]

Pr[C]
+
∑
w∈d

log
Pr[w|C]

Pr[w|C]
.

If the log odd is greater 0, we decide that d is in
C. Set the hyper plane to

α+
∑
w∈V

βw · nw where α = log Pr[C]

Pr[C]

βw = log
Pr[w|C]

Pr[w|C]
nw = occ. of w in d

For nonlinear problems, a linear classifier will pro-
duce bad results, while kNN works very well (with
enough training data).

10.7 More than two classes

Any-of Classes are independent, a document can
belong to any number of class, the problem
can be decomposed into n binary problems.
Very common for documents.

To classify a document, test if it belongs to a
class for each class and decide individually.

One-of Classes are mutually exclusive, each doc-
ument belongs to exactly one class.

To classify a document, test against all classes
and assign to the class with highest score, con-
fidence or probability.

11 Clustering

Clustering is the process of grouping a set of ob-
jects into classes of similar objects. It is the most
common form of unsupervised learning. Clustering
increases recall, enables better navigation or user
interfaces and speeds up vector space retrieval.
Possible outputs are hierarchies or visualization as
maps.

The recall is increased as it can be assumed that
documents in one classes behave similarly w.r.t rel-
evance. Therefore, cluster documents a priori and
return documents from a cluster matching a query.
For example, a query for car should return auto-

mobile as well. For navigation, similar clusters
could be shown to ask more specific questions.

Issues for clustering include the representation of
clusters. Clusters could be represented as docu-
ments in the vector space. For a corpus it is also
unclear how many clusters there are. Too many
clusters include trivial clusters, too big clusters
contain no information.

For the similarity notion, a semantic similarity is
desired. In practise, one uses term-statistical sim-
ilarity. We use cosine similarity in a vector space.
The similarity is defined by a distance measure,
e.g. Euclidean distance.

11.1 Algorithms

Flat algorithms start with a (random) partition
and refine it iteratively, e.g. K means clustering.
Hierarchical algorithms can work bottom-up, ag-
glomerative or top-down, divisive.

11.2 Hard- vs. soft clustering

Hard clustering means that each document belongs
to one cluster while in soft clustering each docu-
ment can belong to several clusters. Hard cluster-
ing is easier to do, while soft clustering often makes
more sense.

11.3 Partitioning algorithms

Construct a partition of n documents into a set of
K clusters. The input is a set of documents and
the number K. Find a partition of K clusters that
optimizes the chosen partitioning criterion. Can
choose a global optimum or an effective heuristic
method (K-means and K-medoids).

11.4 K-Means

Work on real-valued document vectors. Clusters
are based on centroids of points in a cluster c:

#»µ(c) =
1

|c|
∑
#»x∈c

#»x .

Reassignment to clusters is based on the distance
to the current cluster centroids.

Algorithm: Select K random documents {si, 0 <
i < K} as seeds. Iterate until clustering converges:
For each document di, assign it to a cluster cj , such
that distance dist(di, cj) is minimal. Next, update
the centroids for each cluster cj : si = #»µ(cj).

Termination can be based on a fixed number of it-
erations, unchanged partitions or unchanged cen-
troids. K-means is known to converge against a
state where clusters do not change, possibly with
a large number of iterations.

9

11.5 Hierarchical Clustering 11 CLUSTERING

11.4.1 Convergence

Define the goodness measure of cluster k as the
sum of distances from documents to the cluster’s
centroid

Gk =
∑
i

(di − ck)2,

and the goodness as G =
∑

kGk. The goodness
decreases monotonically. Convergence heavily de-
pends on the right choice of seeds.

The time complexity of K-means is based on

• Computing the distance between two vectors:
O(M).

• Reassigning clusters: O(KN) distance com-
putations, resulting in O(KNM).

• Computing centroids: O(NM).

• For I iterations: O(IKNM).

K-means requires to number of clusters before run-
ning, however it is not really possible to know that
number upfront. Modelling cost for each cluster
and benefit, we can compute the total value, which
should be maximized. The benefit of a document
can be computed as the cosine similarity of a clus-
ter with its centroid. The total benefit is the sum
of all benefits.

11.5 Hierarchical Clustering

The goal is to build a tree-based hierarchical tax-
onomy from a set of documents. We use a recursive
application of a partitional clustering algorithm.

11.5.1 Hierarchical Agglomerative Clustering

Start with each document in a separate cluster.
Then repeatedly join the closest pairs of clusters,
until there is only one cluster. This forms a binary
tree of clusters. We define several different ways of
computing the closest pair :

Single link Combine the two clusters that are
most cosine similar. For an unspecified similarity
function sim and two clusters ci and cj , we have

sim(ci, cj) = max
x∈ci, y∈cj

sim(x, y).

After merging ci and cj , its similarity to ck is

sim(ci ∪ cj , ck) = max(sim(ci, ck), sim(cj , ck)).

The resulting clusters can have a long and thin
form.

Complete link Similarity of furthest points, least
cosine similar. Similar to single link, we have

sim(ci, cj) = min
x∈ci, y∈cj

sim(x, y).

After merging ci and cj , its similarity to ck is

sim(ci ∪ cj , ck) = min(sim(ci, ck), sim(cj , ck)).

Clusters are tighter and more spherical.

Centroid Cluster those centroids are most cosine
similar.

Average link Average cosine between pairs of el-
ements.

Computational Complexity In the first iteration,
there are O(N2) steps required. In each iteration,
the most recently created cluster has to be com-
pared to N − 2 clusters. This results in O(N3) or
if done cleverly O(N2 logN).

Group Average The group average is the average
similarity between all pairs within merged cluster:

sim(ci, cj) =
1

|cj ∪ ci| · (|cj ∪ ci| − 1)∑
#»x∈cj∪ci

∑
#»y ∈cj∪ci

#»x 6= #»y

sim(#»x , #»y).

It is a compromise between single and complete
link. One can choose to average across all ordered
pairs in the merged cluster or to average over all
pairs between the original cluster.

To compute the group average similarity, always
maintain the sum of vectors in the cluster #»s (cj) =∑

#»x∈cj
#»x and compute the similarity in constant

time:

sim(cj , cj) =
(#»s (ci) + #»s (cj))

2 − |ci| − |cj |
(|ci|+ |cj |) · (|ci|+ |cj | − 1)

.

A good clustering makes sure that the intra-class
similarity is high, and the inter-class similarity is
low. The quality of a clustering algorithm is tested
against a gold standard data. It must be assessed
against a ground truth with labelled data. As-
sume document with C gold standard classes ,
while a clustering algorithm produces K clusters
ω1, ω2, . . . , ωK with ni members.

10

12.1 LSI 13 LINK ANALYSIS

Introduction to Information RetrievalIntroduction to Information Retrieval

Rand Index measures between pair

decisions. Here RI = 0.68

Number of
points

Same Cluster
in clustering

Different
Clusters in
clustering

Same class in
ground truth 20 24

Different
classes in
ground truth

20 72

Sec. 16.3

Figure 3: Rand Index schema

Purity The purity is the ratio between the dom-
inant class in the cluster πi and the size of the
cluster ωi:

Purity(ωi) =
1

ni
max

j
(nij) j ∈ C

This is a biased measure for n clusters.

Rand Index RI

RI =
A+D

A+B + C +D

See figure 3 for a demonstration.

12 Latent Semantic Indexing (LSI)

Use the term-document matrix and convert it to a
different representation using SVD.

For a term-document matrix A we compute an ap-
proximation Ak. Each term has its own row and
each document its column. Thus, documents live
in a space of k � r dimensions.

In vector space, we can automatically select index
terms and can handle partial matching. Ranking
can be done according to a similarity score. To
improve retrieval performance, one can apply term
weighting schemas. Extensions include clustering
and relevance feedback. It has a geometric foun-
dation.

Lexical semantics cannot deal with polysemy (mul-
tiple meanings of one word) and synonymy (mul-
tiple terms with the same meaning).

12.1 LSI

The idea is that similar terms map to similar lo-
cations in the low dimensional space. Noise is re-
duced by the dimension reduction. LSI is cluster-
ing as related axes in the vector space are brought
toghether.

• Perform a low-rank approximation of the doc-
ument term matrix, typically rank 100-350.
Under 200, it has been reported unsatisfac-
tory. Lower k improves recall, higher improves
precision.

• Map documents and terms to a low dimen-
sional representation.

• Latent semantic space: a mapping such that
the low-dimensional space reflects semantic
associations.

• Compute document similarity based on inner
product in the latent semantic space.

• Map each row and column of A onto the k-
dimensional LSI space by SVD.

• Map a query q into this space by:

qk = qTUKΣ−1k .

The dimensionality roughly shows the number of
topics it presents. Mathematically, if A has a rank
k approximation of low Frobenius error, then there
are no more than k distinct topics in the corpus.

LSI can be applied to many pattern recognition
and retrieval tasks with feature-object matrices.

13 Link Analysis

The Web can be viewed as a directed graph. One
can assume that links have a signal quality, and
the anchor text describes the link targets.

13.1 Page Rank

Idea: walk web pages by following links. At each
stage, visit one of the links with equal probability.
To avoid dead ends, do a random jump with 10%
probability. This leads to a long term rate at which
any page is visited. The rate can be computed by
Markov chains.

Represent all pages in a matrix P . Then for all i,∑n
j=1 Pij = 1. Markov chains are ergodic, if there

is a path from any state to any other state and if
after a fixed time T0, the probability of being in
an any state in T > T0 is nonzero. It converges
to a long term visit rate. The state vector a =

11

14.2 Duplicate Detection 14 WEB SEARCH

(ai, . . . , an is a vector of probabilities, where ai is
the probability to be in state i. For any state a,
the next state is distributed as aP . If a is the
steady state, we have a = aP , which is the left
eigen vector of P . We can compute the steady
state by a = xP k for some initial probability vector
x.

For preprocessing, calculate the probability vec-
tor a from a given matrix. Each position repre-
sents the page rank of one page. For query pro-
cessing, retrieve all matching documents and sort
them by their page rank. This means that the or-
der is query-independent. In reality, the page rank
is used, but only within many other features. For
page crawling policies, it is more often used.

The random surfer model used in the page rank
algorithm can be biased, for example by bookmark
pages. Also, the model does not really reflect a real
surfer (no back button).

13.2 Topic Specific Page Rank

Page rank modified to return values based on
query. There exist two approaches:

Off line Compute page rank for individual topics.
Also query independent, but aware of cate-
gories.

On line Generate a dynamic page rank score
based on weighted sum of topic specific page
ranks.

To personalize a page rank query, we pass not only
the web graph W , but also an influence vector v
over the topics to the page rank algorithm. It out-
puts the rank wrt. the influence vector:∑

j
[wj · PR(W, vj)] = PR(W,

∑
j

[wj · vj])

13.3 Hyperlink-Induced Topic Search
(HITS)

HITS is the predecessor of page rank. . . .

14 Web Search

For web search, precision is much more important
than recall. Precision is lowered by special pages
prepared to be found by search engines with irrel-
evant content.

14.1 Size of the web

The size of the Web cannot be determined. How-
ever, it is possible to measure the size of a search

index of a search engine. This is a rough mea-
sure of the web’s size. The process can be auto-
mated by picking random queries from lexicon, and
query two search engines with it. For each URL in
the results of search engine A, check its presence
in search engine B. The distribution induces the
probability weight W (p) for each page:

W (SEA)

W (SEB)
=
|SEA|
|SEB|

.

For random searches, one can compare the result
set size of the search engines. Then by averaging
over all queries, using overlap and size ratio, esti-
mate index size ratio and overlap.

By sending HTTP requests to IP addresses, one
can estimate the size of the Internet. It has the
benefit that it provides clean statistics and is not
biased by a crawling strategy. However, many
pages are not accessible like this (virtual hosts!),
and not all pages are linked from the front page.

There is no perfect sampling method to solve the
task, and although there are many new ideas the
problem gets harder.

14.2 Duplicate Detection

Duplicates can be detected with finger prints.
Near-duplicates require an approximate match,
like edit distance or similarity measure.

A simple yet powerful method is to create word n-
grams (shingles) from documents and then calcu-
late the Jaccard coefficient to obtain the similarity
of the two.

12

	Introduction
	Index
	Discussion of Boolean Search
	Terms
	Sophisticated Information Retrieval

	Building the Index
	Tokenization
	Stop words
	Normalization
	Thesauri and Soundex
	Lemmatization
	Stemming
	Data Structures
	Phrase Queries

	Dictionary structures
	Term structure

	Wild-card Queries
	Permuterm
	Bigram indexes

	Spelling correction
	Edit Distance
	Weighted Edit Distance
	Using Edit Distance
	n-gram Overlap
	Jaccard-Coefficient

	Context-sensitive Spell Correction
	General Issues
	Soundex

	Compression
	Lossy or Lossless?
	Vocabulary vs. Collection Size
	Collection Frequency — Zipf's law
	Compression on Dictionary
	Compression on Posting Lists

	Ranking
	Ranked Retrieval

	Augmentation
	Relevance feedback
	Centroids
	Rocchio Algorithm
	Assumptions

	Problems with Relevance Feedback
	Query Expansion
	Automatic Thesaurus Generation

	Evaluating Search Engines
	Precision and Recall
	F Measure

	Difficulties

	Classification
	Classification Methods
	Probabilistic relevance feedback
	Naïve Bayes
	Rocchio Classification
	k-nearest Neighbors, kNN
	Linear classifiers and classification
	More than two classes

	Clustering
	Algorithms
	Hard- vs. soft clustering
	Partitioning algorithms
	K-Means
	Convergence

	Hierarchical Clustering
	Hierarchical Agglomerative Clustering

	Latent Semantic Indexing (LSI)
	LSI

	Link Analysis
	Page Rank
	Topic Specific Page Rank
	Hyperlink-Induced Topic Search (HITS)

	Web Search
	Size of the web
	Duplicate Detection

