
Master’s Thesis Nr. 115

Systems Group, Department of Computer Science, ETH Zurich

Completeness is in the eye of the beholder
A sandbox concept for databases

by

Moritz Hoffmann

Supervised by

Prof. Donald Kossmann

March 2014 – September 2014

1

Completeness is in the eye of the beholder
A sandbox concept for databases

Recently there is a strong tendency in companies to combine databases into a single
data repository. In this work, we propose a data completeness model which provides a
means for applications to define constraints that specify when data relevant to them is
complete. We introduce the sandbox concept which provides the impression of a local
database to applications. In addition, we propose an implementation, introducing different
optimization approaches for completeness checking. Finally, we show the viability of the
sandbox concept for ensuring data completeness.

3

Contents

1 Introduction 6
1.1 Sandbox . 8

2 Related work 9
2.1 Data completeness model . 9
2.2 Completeness checking . 10

3 Approach 12
3.1 What is completeness? . 12
3.2 Theory . 12

3.2.1 Informal definitions . 13
3.2.2 Database . 13
3.2.3 Sandbox . 14
3.2.4 Completeness . 15
3.2.5 Sandbox goals . 16

3.3 SQL extensions . 16
3.3.1 Creating a sandbox . 17
3.3.2 Instantiating a sandbox . 17
3.3.3 For-all operator . 19

3.4 Use cases . 19
3.4.1 Business intelligence . 19
3.4.2 Bug tracker and universal quantification 21

3.5 Implementation . 22
3.5.1 Workflow . 22
3.5.2 When to check for for completeness 23
3.5.3 Intra-transaction completeness checking 24
3.5.4 Naïve algorithm . 25

3.6 Cost model and evaluation . 31
3.6.1 Continuous queries . 31
3.6.2 Next and last temporal completeness operators 32
3.6.3 Now queries . 32

3.7 Required database features . 33
3.7.1 Temporal tables . 33
3.7.2 Changelog tables . 33

Contents 4

3.8 Optimization of completeness checking . 33
3.8.1 Incremental processing . 34
3.8.2 Incremental processing of the completeness predicate/counting . . 36
3.8.3 Temporal processing . 37
3.8.4 Single version completeness checking 38
3.8.5 Version range completeness checking 39
3.8.6 For-all counting approach . 40

4 Benchmark 41
4.1 TPC-C . 41

4.1.1 Sandboxes . 42
4.2 Operators . 43
4.3 Tracking changes: Triggers . 44
4.4 Cost of maintaining temporal and changelog tables 44
4.5 Cost of selection completeness operators 45
4.6 Cost of join completeness operators . 45
4.7 Cost of for-all completeness operators . 46
4.8 Benchmark results . 46

4.8.1 Cost of changelog/temporal tables 47
4.8.2 Live processing selection operators 47
4.8.3 Live processing join operators . 49
4.8.4 Live processing for-all operators 51
4.8.5 Past processing selection operators 53
4.8.6 Past processing join operators . 54
4.8.7 Conclusions . 54

5 Summary 56
5.1 Future work . 56

5.1.1 In-depth analysis . 56
5.1.2 Punctuation . 57
5.1.3 Efficiently providing data . 57
5.1.4 Remembering complete database versions 57
5.1.5 Branching and writes to sandboxes 57

Bibliography 58

5

List of Figures

3.1 Sample completeness function results . 16
3.2 Temporal single version selection . 38
3.3 Temporal range version selection . 39
3.4 Sweep line approach to obtain complete versions. 39

4.1 Transaction performance with changelog/temporal features and without . 47
4.2 Performance of live selection . 48
4.3 Live selection scatter plot . 48
4.4 Performance of live joins . 50
4.5 Live join scatter plot . 50
4.6 Performance of live for-all . 52
4.7 Live for-all scatter plot . 52
4.8 Past selection operators scatter plot . 53
4.9 Past join scatter plot . 54

6

1 Introduction

Today, nearly all businesses use databases to store the data required for operations and
analysis. Traditionally, data is stored in relational databases separated by department
and functionality. For example, Finances has its own databases, customers are managed
using a Customer Relationship Management (CRM) system and Procurement maintains
items in storage. In addition to that, a company’s performance is measured periodically
and yearly statements have to be published. For each of these tasks a separate set of
databases exists.

Between databases there often exists some degree of redundancy. Customers may appear
in several databases, as well as orders and items in orders. A complete view of a company’s
data is available only when combining all databases. Redundancy can cause increased
maintenance costs and might lead to data corruption if not enough care is taken. Ensuring
consistency is also more complicated if data is spread over several databases.

Sharing a common subset of data is hardly, if at all, possible, because this might conflict
with the various responsibilities in companies.

Combining databases to overcome these problems also proves to be a difficult task. Next
to business related reasons, e.g. each department wanting to have its own data under its
control, it is also problematic from a technical point of view. Usually, companies have a
long-grown IT infrastructure, with proven and established well-functioning applications.
Creating a unified database would require all these applications to be moved to the new
database. Such a migration could provoke lots of possible disruptions.

Apart from the work involved to perform the actual migration, there also might arise
compatibility problems, meaning new application software versions might need to be
acquired, or the application software might need to be replaced altogether. Moreover,
the applications might have incompatible or diverging data consistency requirements,
which are hard to deal with if the unified database cannot fulfill all of them. When we
also want to ensure continuous service, this adds another difficulty.

A typical example for completeness is business performance analysis, which is performed
at fixed time intervals, say every month. It is assumed that at a given point in time all
required data is in a complete state. Here, a problem arises: If this assumption is too
optimistic, we might query the data too early and have to rerun the same analysis, or
worse, the analysis is wrong. If the assumption is too conservative, we might delay the
analysis for no reason.

1 Introduction 7

Imagine a manager wanting to know how well a branch of a multinational company
performed last month. The company’s upper management performs an overall analysis
each month after all countries have closed all transactions. While some country’s branches
work faster and their results are available almost immediately, others are slower. The
company-wide analysis can only be performed when all countries have finished their
transactions. Although the manager is only interested in a specific branch, all branches
have to report their data first. Only then, the specific branch’s data is available. So, the
global completeness constraint delays access to a specific subset of the data. To overcome
this limitation, the manager could define personal completeness constraints and perform
the analysis for a specific branch as soon as the data is ready, possibly saving a lot of
time and in turn being able to run the business more efficiently. By only exposing the
data belonging to a particular branch, which is in itself complete, we are sure that the
analysis will be limited to only complete data and can be assumed to be correct.

In contrast to this we are now looking at firefighters. Assume there exists a database that
contains information about buildings, addresses and other details in a city, as well as
information about current incidents. From the firefighters’ perspective, every information
might be relevant – they are interested in all data, even if it might be incorrect or
incomplete for someone else! Firefighters should be able to access all information and left
to decide themselves what to do with it. They might also be interested in the absence of
information, which is only possible to recognize if all known information is present.

Another use case is related to software engineering. In a typical software engineering
process programmers develop parts of software which belong to some milestone or planned
release. In this use case we focus on issues (bugs) blocking the release of a product. The
software can only be released once the milestone is reached, and that in turn is the case
when all associated bugs are closed (resolved). In other words, a product can go to the
next development phase once bugs for the previous phase are closed. It is a manager’s
decision to advance to the next phase. In traditional data management systems, this is
done by checking if all bugs for the current milestone are closed, and when this is true,
manually advancing the development efforts to the next milestone.

Using our proposed system, the fact that all bugs must be closed for a specific milestone
would be expressed as a completeness requirement. As soon as the bug database fulfills
this requirement, it would notify the manager.

All use cases share a common problem: The notion of completeness is subjective to each
user and highly depends on individual needs and expectations. Furthermore, each user
might be interested to see different parts of the data. Thus, the visibility of the data
also needs to be based on subjective needs. The use cases and introduction showed that
both the time when something is visible as well as the content of what is visible matter.
The focus of this work is to analyze how to design and build a system that allows users
to express completeness constraints and provides them with the data matching these
constraints.

1 Introduction 8

1.1 Sandbox

A possible solution for the problems described above lies in the introduction of a software
sandbox between a database and a user.

A sandbox refers to a box full of sand that children play in. They can do whatever they
want because all sand (in theory) stays inside the sandbox and the area around it is not
affected. In that sense, a sandbox is a little isolated world of its own and the player
interacts only with the environment provided by the sandbox.

In computer science, a sandbox is a well known concept, especially in security. It is often
used in operating systems to protect other parts from the effects of an application. This
can be used to execute untrusted code because the sandbox guarantees that nothing gets
out.

Similarly, we apply the sandbox concept to relational databases. In this case, however,
we want to isolate the user inside the sandbox from the outside, protecting them from
data they do not expect and cannot understand: The users only get to see what they
want to see. In this sense, the sandbox concept used here focuses more on usability than
on security.

A sandbox acts like a traditional database by restricting what is visible and showing
it when it is complete. Both aspects are based on a user’s subjective expectations. A
sandbox is potentially backed by a heterogeneous database system. Only when the data
reaches a complete state, it will be visible inside the sandbox. By providing a traditional
database interface, we are able to solve a lot of the integration problems.

Applying the sandbox concept to databases has other benefits. For example, in a company
might exist several databases for specific tasks. We merge the data into one big shared
database, at the same time providing a sandbox for each application to give it the illusion
of having a regular database. The task of the sandbox is to define what data to make
visible, i.e. make sure that the data is matching the application’s consistency requirements,
and when to provide the data. For a user accessing data through a sandbox it does not
matter whether behind the sandbox is a unified database or a plain old Structured Query
Language (SQL) database because the sandbox provides an abstraction to it.

To sum it up, a sandbox behaves like a traditional well-known database towards applica-
tions and is an instrument allowing the user to formulate data completeness constraints.
It limits the exposure between underlying data and the user. The underlying database
system, which can range from a single database to a multi-tier heterogeneous architecture,
is irrelevant to the user of a sandbox.

9

2 Related work

To our knowledge, there are no similar data completeness approaches comparable to
what we present in this work. The main reason for this is the fact that we propose to let
the user specify completeness constraints to be checked by the database on the user’s
data. In addition to that, we provide means to let the user work with his data at versions
he considers to be complete. Nevertheless, our research touches other fields that have
partial similarities and aid us in solving and differentiating our work. In the following,
we will describe some of those fields.

2.1 Data completeness model

In data warehouse theory, data completeness is supposed to make sure that all necessary
data has been validated and loaded into the target repository. In order to accomplish this,
the database might have to compare record counts between source and target, check for
rejected records, verify the uniqueness of values and also check that values remain within
their boundaries. However, these requirements might not be met at all times because
errors occur and as a result, users might be blocked, or worse, work with incomplete data.
In the last few years, there have been research initiatives to model and define how data
completeness should be handled. An interesting field of research is to logically determine
if a query to the database can be answered completely. Different authors [12,14–17] argue
that queries could be logically verified to determine if the database being queried could
provide a complete answer to a query. Savkovic et. al [19] created a system capable to
verify query entailment using database’s meta data. Their system creates a disjunctive
logic program from a query and database meta data to determine if a query’s result
is complete. If the program can determine completeness, then a query’s response can
be considered complete. This is a very interesting approach for data warehouse based
applications as it can be used to automate completeness checking within the database.

Our work is based on the idea that completeness is subjective, i.e. each user has a different
notion of completeness which cannot be determined by software just based on the data.

Libkin [13] focuses on determining how to deal with incomplete data in the presence of
null values. In his work, he analyzes how null values affect queries posed over databases
assumed to be complete, but also proposes how this problem could be handled by
enhancing query processing techniques. His work describes new complementary research

2 Related work 10

paths that need to be solved for data completeness problems in presence of null values.
Compared to this, our work proposes to create a completeness model solely based on
user’s needs and constraints.

2.2 Completeness checking

There exist many ways to evaluate conditions based on the data in a database. We
consider the following approaches relevant to specific conditions that could also cover
some completeness constraints. However, we do not see that any of those approaches
completely covers our approach.

Incremental computation Incremental view maintenance has been around for many
years and is a well studied subject. It is an optimization to keep materialized views
up to date by incorporating changes from transactions. The idea is to update
query results only by applying the deltas of relations to the query and that way
computing a delta of the materialized view. Deltas are supposed to be small and
because of this, a huge performance improvement might be realized [21]. We are
using parts of this approach for completeness checking, but optimize it even further
as we are only interested in the cardinality of a relation, which we compute as
discussed in 3.8 on page 33.

Stream processing Stream processing, also known as complex event processing (CEP),
is a technique to evaluate the result of a formula over a stream of data using
a sliding window. When checking a formula over an infinitely small window
this is semantically equivalent to our proposed completeness checking approach.
However, there are situations where stream processing is not suitable, especially
when evaluating joins that depend on data not being changed in the window
but preexisting in the database. Also, it is in general not aware of versions and
transactions, so it might tell the user that some version was complete, but not
which one. Using a combined incremental and streaming approach could be an
interesting field to investigate. An overview of this approach is given by Cugola
and Margara [5].

Temporal data management We use a simple temporal table model to access past
data without special indexes and optimizations besides regular database indices.
Temporal data management researches how to efficiently store and access temporal
data using specialized storage and index structures. It is a field with very active
research. Snodgrass’ temporal data model [20] started new research [6,18]. New
index structures have been proposed by [2,4,6,10,11,22]. Temporal data management
could be useful to reduce the costs of past processing, i.e. checking data for
completeness that is in the past.

Active databases An active database is a relational database with additional features to
define events and responses. It is a different concept to our completeness model as

2 Related work 11

it defines a very limited set of events and the user has to be aware of what events
could make the desired database version complete. The work presented by Behrend
et al. [3] describes an SQL extension to active database research for performing
time-based triggers. Their work tries to complement [8] by allowing users to trigger
actions by time events, to repeat the same action during a time range, and delaying
the reaction execution if needed. This through SQL. In comparison, our model
does not require users to define events at which the completeness constrains are
to be evaluated. Those events could be derived from the completeness constraints
themselves.

12

3 Approach

In this chapter, we first present a theoretical foundation of the sandbox concept and an
SQL syntax extension to work with sandboxes. Next, we show how our use cases can
be expressed using the proposed notation, followed by sections covering implementation
approaches and optimization. At the end, we present our benchmarking results.

3.1 What is completeness?

Completeness is a state of the data that matches a user’s expectation in order to be able
to work with the data. As it covers a user’s expectation, it is personal in nature and does
not reflect a ground truth. In this work, completeness is defined over the contents of a
database, and a database can either be in a complete or incomplete state according to
the user’s expectations.

Completeness is an orthogonal concept to SQL integrity constraints as it does not impose
restrictions on what data the database is allowed to contain. SQL considers a database
to be complete when integrity constraints are met. Therefore, integrity constraints are
not suitable to express completeness conditions, because this would require the data
to be complete at all times. User defined completeness conditions can be seen as a
generalization of integrity constraints. Completeness constraints may be defined over a
subset of a given database, and this may also be what a user is interested in.

The following section about the theoretic foundation expresses this formally.

3.2 Theory

We define the sandbox concept on top of relational databases. We extensively make use of
relational algebra, which defines relations, tuples, and operations to derive new relations
from existing ones. The following description defines concepts related to sandboxes.

3 Approach 13

3.2.1 Informal definitions

The following items list concepts that are related to sandboxes, only defining them
informally. In the 3.2.2 we provide mathematical definitions of the concepts explained
here.

Database A database is a set of distinct relations. We use DB to denote a database.

Relation schema A relation is characterized by its relation schema, which defines the
attributes of tuples within that relation.

Relation A relation is a set of tuples which all conform to one relation schema.

Version Since databases change over time, we identify different database versions using
version numbers. The version number is monotonically increasing and can be
understood as a logical time stamp. For the database DB at version number i we
write DBi.

Tuple instance The basic unit in the database, which is an ordered list of elements
conforming to a relation schema. It belongs to a specific relation and can appear in
different database versions.

Sandbox A sandbox is defined by a set of functions on relations and a global completeness
predicate. The relation functions determine what is visible, and the completeness
predicate determines at what points in time it is visible (when).

We are using existential (∃) and universal (∀) quantification to denote that there is at
least one matching element in a set or that a predicate holds for all elements in a set. To
build new sets, we use the set-builder notation, for example to construct the set Y from
a set X with a predicate p we write: Y = {x : x ∈ X ∧ p(x)}.

3.2.2 Database

Versions number A version number represents a logical time stamp (monotonically
increasing). The set V denotes all version numbers that are present in the database.

Relation A relation r is defined by a set of tuples that all follow the same relation schema.
Furthermore, a relation r that is contained in database version DBi is denoted by
ri.

Database version A database DBi is a set of relations at version number i. The set
DBV contains all DBi where i is a version number:

DBV ={DBi : i ∈ V } (3.1)

We assume that there are no schema changes on relations between database versions.

3 Approach 14

Transaction A transaction describes how to derive a new database version from an
existing one. We define the effects of a transaction on the relation level. Given
a relation r, the version at the start of a transaction is pre(r) (pre), the version
after is pst(r) (post). The set of changes (removed and inserted tuples) is called
dlt(R) (delta), see 3.8.1 for a more elaborate definition, where we also define the]
operator. It holds that

pre(ri) =ri (3.2)
pst(ri) =ri+1 (3.3)
ri+1 =ri] dlt(ri) (3.4)

(3.5)

It follows for relation r at any version that

pst(r) = pre(r)] dlt(r) (3.6)

3.2.3 Sandbox

Sandbox A sandbox SB is a pair 〈Pr, ps〉 of a set of relation functions Pr and a complete-
ness predicate ps. The relation functions Pr specify which tuples will be provided
to the user at a given database version, if the version fulfills the completeness
constraint ps.

SB = 〈Pr, ps〉 (3.7)

Relation function A relation function is a function that maps a relation ri to a subset
of that relation r′i. A sandbox’s relation functions are contained in Pr. Then,

∀p ∈ Pr : ri
p→ r′i. (3.8)

Completeness predicate A completeness predicate is a function to determine if a database
at version i is complete. It returns a boolean value and is contained in ps:

DBi
ps→ {>,⊥}. (3.9)

Sandbox completeness A sandbox SB is complete in version i if its completeness predi-
cate ps(DBi) holds.

Sandbox contents Applying a sandbox SB = 〈Pr, ps〉 to a database DBi, the sandboxes’
contents SBi is defined as

SBi = {ρ(ri) : ri ∈ DBi ∧ ρ ∈ Pr} . (3.10)

Note that the sandbox contents are independent of the completeness condition.

3 Approach 15

Completeness predicates

A completeness predicate is a boolean function taking a set of relations as input. It
is used to decide whether a particular database version is complete or not. In general,
there are two forms of completeness predicates (or any combination of those). Existential
quantification is used to check that there exists a certain tuple in the database, and
universal quantification is used to verify that a set of tuples conforms to some specification.
In this analysis we focus on completeness predicates having one of the following forms,
where F is some relation, t a tuple of relation S and p is a predicate.

∃t ∈ S (3.11)
¬∃t ∈ S (3.12)
∀t ∈ S : p(t) (3.13)

We also consider completeness predicates that require a certain number of tuples to be
present or absent. σ is the selection operator as defined in relational algebra. Then,

∃t ∈ S ⇔ |S| ≥ 1 (3.14)
¬∃t ∈ S ⇔ |S| = 0 (3.15)

∀t ∈ S : p(t)⇔ |S| − |σp(S)| = 0 (3.16)

The correctness of those equalities follows directly from the definitions of universal and
existential quantification. Universal quantification says that a predicate has to hold
for all elements in a set in order to be true, existential quantification requires that at
least one element exists where a predicate is true. Hence, we can test the cardinality
of a set containing tuples matching a predicate to be greater or equal one in order to
determine if the existential quantification is true. A similar argument holds for universal
quantification: We can compare the count of all elements in a set to the count of elements
matching a predicate taken from the same set. If the counts are equal, we know that the
predicate holds for all elements in the set.

The type of existential completeness constraints we analyze in the following have the
following form, where op ∈ {<,>,=, . . .} and n ∈ N:

|S| op n (3.17)

3.2.4 Completeness

Data completeness defined as a predicate over a database version. Figure 3.1 shows two
completeness predicates p1 and p2 evaluated on different database versions.

3 Approach 16

i¬p1(DBi)

p1(DBi)

i¬p2(DBi)

p2(DBi)

Figure 3.1: Two examples of completeness functions for different database versions i. The
predicates are independent of each other. Note that based on the completeness
function, a database version can be complete at one point in time and become
not complete again at a later point in time.

3.2.5 Sandbox goals

The sandboxes are defined in the theory section (3.2). When using our sandbox concept
combined with relational databases, we have the following goals:

Low cost Like all operations executed on a database, creating and using sandboxes is
associated with a cost. This cost depends on a variety of factors, such as the amount
of data in the database, the transaction rate, the complexity of the completeness
predicate and the number of sandbox instances in the system. In general, the cost
needs to be as low as possible. We would like the cost to follow a predictable
pattern to be able determine where such costs will arise – if the software allows
that.

Unaltered behavior For the regular operation of a database, it is crucial that its behavior
remains unaltered, meaning an update must have exactly the same effect as it does
on a database without sandboxes. This means that sandboxes are allowed to slow
down transaction processing as explained above, but the transaction behavior must
not be altered. No new rollbacks may be introduced by adding the sandbox concept
to the database.

3.3 SQL extensions

SQL is the de-facto standard to interact with databases. It defines a syntax to query,
update and delete data as well as defining schemata. We are using SQL as a tool to allow
users to interact with sandboxes.

3 Approach 17

Listing 3.1: Creating a sandbox
1 CREATE SANDBOX sandboxName [(IN argname argtype [, ...])]
2 [WHEN
3 completenessPredicate]
4 [WITH
5 relationName: predicate [, ...]];

3.3.1 Creating a sandbox

From an SQL perspective, a sandbox consists of two components: the sandbox definition,
and, associated to it, a sandbox instance. The sandbox definition describes the properties
of a sandbox while the instance applies those properties on the database.

The syntax to create a sandbox is aligned with standard SQL syntax. Listing 3.1 shows
the syntax to create a new sandbox.

In the following we describe optional configuration options for the sandbox definition,
which can be provided in addition to the required unique name that identifies the
sandbox.

Completeness constraints are specified as a WHEN condition. They are expressed as a
boolean formula that is true once the database reaches a complete version. If no
completeness constraint is provided the sandbox is considered to be complete at
any version. This expresses the ps of a sandbox definition.

Visibility predicates select data that is visible from within a sandbox, expressed as
predicates applied on relations. They are expressed after the WITH keyword. If no
visibility predicate is supplied for a given relation the sandbox will return all tuples
within that relation. This expresses the set of relation functions Pr of a sandbox
definition.

Parameters can be declared for a sandbox and can later be bound to values when using
the sandbox. This concept adds some flexibility to sandboxes and is similar to
function parameters. It is illustrated in the business intelligence example explained
in section 3.4.1 on page 19.

3.3.2 Instantiating a sandbox

Listing 3.2 shows how to execute the SQL statements referred to as user-provided
statements within a transaction. Note that these statements are only executed if there is

3 Approach 18

Listing 3.2: Starting a transaction based on a sandbox
1 BEGIN ... USING SANDBOX
2 sandbox_name [(value [, ...])]
3 { NOW | { NEXT | LAST } [BETWEEN start AND end] };

. Temporal completeness operator
4 ...; . User-provided statements
5 { COMMIT | ROLLBACK };

a database version that is complete according to the sandbox completeness constraint.1
Parameters need to be provided if the sandbox defines them.

Temporal completeness operator

The temporal completeness operator describes how to test database versions within the
specified time range. Users can choose between now, next and last. The now-operator
instructs the database to test whether the current version of the database is complete, and
only if this is the case, the transaction is started, or the command executed. Otherwise,
an error is raised. The next temporal completeness operator searches for the first
complete state in the future by waiting for the first complete version to appear, starting
at the current version.2 The last operator performs the opposite: It searches backwards
in time, also starting from the current version.

Both next and last allow for an interval to be specified. If provided, the search is only
performed within that interval.

Whenever we use time spans/intervals their start is inclusive but the end is exclusive.
For example, a time span from version u to v includes u but not v, e.g. [u, v).

Continuous completeness queries

An orthogonal alternative to starting a transaction when completeness is reached is to
let the database notify a user via a different channel that completeness has been reached.
The transaction approach limits the number of complete versions that can be observed
to a maximum of one.

If, on the other hand, an application wants to be notified of more than one complete
version without explicitly starting another transaction, the continuous mode of operation
would be the right choice. An application subscribed to a continuous sandbox would
be notified whenever a complete version is reached. A version number can be used to

1The temporal completeness operator determines which database versions are checked for completeness.
2If no interval is specified, the search for a complete state will only stop when the database becomes
complete.

3 Approach 19

Listing 3.3: For-all syntax proposal
1 FORALL (SELECT ... FROM ... WHERE ...)
2 SATISFY ...

identify a particular version to enable AS-OF style queries later on. In this case the
database does not need to maintain the visibility constraints for individual relations. As
this concept does not fit within the command-response concept of SQL, we do not specify
a syntax for it.

3.3.3 For-all operator

We have seen the need to express universal quantification conditions when stating
completeness conditions because there are cases in which a certain condition is met only
if every member of the domain satisfies it. SQL itself does not have an explicit for-all
operator, it only supports existential quantification. For convenience, we introduce a
for-all operator based on the following mathematical definition. Listing 3.3 also presents
a proposed syntax extension. For-all is the same as there does not exist an element for
which the predicate does not hold, as shown in the following formula.

∀x ∈ X : p⇔¬∃x ∈ X : ¬p (3.18)

3.4 Use cases

With the sandbox concept, we can implement use cases where actions of a program depend
on the states of data in a database. If the data matches a condition, an event is triggered
allowing a client to run a single statement or a transaction on that particular complete
version. Depending on the database capabilities, the database can also remember the
complete version and allow to query it at a later point in time. We show how to express
completeness constraints and requirements of the use cases using the SQL syntax we
propose.

3.4.1 Business intelligence

As described in the introduction (cf. p. 6), we want to model a simple business with orders,
items and customers. We are interested in the company’s performance at the end of a
month, which can only be calculated when all transactions are closed. Waiting for the
first complete version is achieved by using the next temporal completeness operator.

3 Approach 20

Listing 3.4: Business intelligence use case, create sandbox
1 CREATE SANDBOX BusinessIntelligenceSandbox(
2 IN :startDate date, IN :endDate date)
3 WHEN
4 FORALL (SELECT status FROM Order WHERE date BETWEEN
5 :startDate AND :endDate)
6 SATISFY status = "processed"
7 WITH
8 Order: data BETWEEN :startDate AND :endDate;

Listing 3.5: Business intelligence use case, use sandbox
1 BEGIN USING BusinessIntelligenceSandbox("2014-08-01", "2014-08-31") NEXT
2 BETWEEN "2014-09-01" AND "2015-01-01";
3 ...
4 COMMIT;

We limit our scope by looking at a single Order relation which encodes individual orders
by customers and stores information about whether the order is completely processed
or not. We are not trying to model a whole system, as this is not required to show the
sandbox functionality.

An order has an identifier, a customer, a date and a status field. The status can either
be new, processing or processed:

Order(id, customer, date, status)

The sandbox is defined as being complete if all orders over a time span have been
processed. This time span can be used as a parameter (See listing 3.4 for the create-
sandbox instruction). The sandbox also only exposes complete data matching the visibility
predicates, which are orders having their processing date in the specified time span. It is
worth noting that a real sandbox would also restrict other relations to keep foreign key
relationships valid. The time span’s end is not checked for completeness, according to
the specification of time spans in this work (cf. p. 18).

To actually run the business intelligence queries, the user would instantiate the sandbox.
This involves binding the parameters of the sandbox to concrete values. In listing 3.5, we
show how to start a transaction as soon as the sandbox is complete, i.e. when the next
complete version has been found.

3 Approach 21

Listing 3.6: Bug tracker sandbox
1 CREATE SANDBOX CompleteMilestone(IN :milestone int)
2 WHEN FORALL (SELECT status FROM Bugs WHERE Bugs.milestone =

:milestone)
3 SATISFY status = "closed"
4 WITH
5 Bugs b: b.milestone = :milestone;

Listing 3.7: Bug tracker sandbox instance
1 BEGIN USING CompleteMilestone(15) NEXT;
2 ...;
3 COMMIT;

3.4.2 Bug tracker and universal quantification

In this scenario, we model the issue tracking part of a software engineering project. We
assume the existence of software issues (aka bugs), which are associated to a milestone
table. Each bug is also associated to a single component. When a bug is created, it is in
state open. After solving it, it is closed. The Bugs relation has the following form:

Bugs(b_id, component,milestone, status, · · ·)

A Milestone has an identifier. Other fields are not relevant to this use case.

Milestone(m_id, · · ·)

A milestone is complete as soon as all bugs associated with it are closed. For a given
milestone M , this can be expressed as

∀b ∈ σmilestone=M (Bugs) : b.status = "closed"

Listing 3.6 shows the sandbox expressing this constraint.

We can imagine at least two ways to use the sandbox: First, to be notified when a
release can be created, this would mean to wait for the next complete database version.
Secondly, to be notified whenever a complete version is reached, using a continuous
operator. Listing 3.7 shows the first case.

3 Approach 22

3.5 Implementation

Now, as the sandbox has been formally specified, and an accompanying SQL syntax
has been introduced and applied to use cases, we will show algorithms to compute
completeness for sandbox instances. First, we explain our proposed sandbox workflow.
Secondly, we discuss when and how completeness checking can be done and introduce
a very basic algorithm for completeness checking. Finally, we show how parts of this
approach can be optimized under different constraints. The focus of this work lies on
completeness checking and the optimization thereof.

In this work, we have decided to restrict the expressive power of completeness conditions
in order to allow certain optimizations in the implementation.

We allow users to perform selection and join operations plus quantification (existential and
universal ones). Selection and join are the most important building blocks of relational
algebra.

Once the characteristics of these operators are known, they could be used to predict
the behavior of more complex operations (this lies outside of the scope of this work,
though).

So we accept a trade-off of expressive power, thereby gaining an efficient implementation
that can be used to evaluate different approaches of completeness checking.

3.5.1 Workflow

In this section we propose a workflow that could be used to implement the sandbox
concept in a relational database. To create a sandbox, the database only needs to store
the sandbox definition.

1. The user creates a sandbox definition to define the completeness predicate and
relation predicates.

2. The database validates and stores the sandbox definition.

When a user queries a sandbox, the workflow is more complicated.

1. The user issues a command to create a sandbox instance, possibly binding parameter
values.

2. The database checks if the start time has been reached already; if not it waits until
the time has been reached. By default it does not wait as the default start time is
the current time.

3. For each committed transaction the database tests if the completeness predicate
is true. If so, it executes the user’s instructions and then destroys the sandbox
instance.

3 Approach 23

An exception to this approach are continuous sandboxes. In this case, the user asks
the database for complete versions and queries those versions in a second operation.
Although we do not specify a syntax for it, we still provide the algorithm to implement
it (see 3.5.4 on page 25).

1. The user issues a command to create a continuous sandbox instance.

2. The database checks if the end of the time span has been reached already; if not it
waits until the time has been reached.

3. For each committed transaction the database tests if the completeness predicate is
true. If so, it notifies the user about the complete version, for example by providing
a time stamp. In addition to that, it remembers that another complete version has
been found.

4. If the end of the time span is reached, or enough complete versions have been
encountered (if a limit was defined by the user), the database destroys the sandbox
instance.

3.5.2 When to check for for completeness

As discussed in the theory section (3.2.3), the sandbox concept requires distinct transac-
tions. Only between transactions completeness can be reached, but complete versions
occurring within a transaction that do not materialize are irrelevant.3

The algorithms we propose take this into account. For every transaction, there exist
exactly two points in time when completeness can be computed. The first option is to
compute completeness at the end of a transaction after the user has made all changes
and the database is about to commit the changes. The second option is to compute
completeness after a transaction has been committed. In this work we focus on checking
completeness at the end of a transaction, using the first option. The second approach is
semantically equivalent but has different implementation challenges. The main problem
with inter-transaction completeness checking is that certain versions might be lost for
computing completeness, because transactions run concurrently. Due to this, there is no
defined inter-transaction state. On one hand, this could lead to incorrect results. On the
other hand, it makes some optimizations impossible to implement.

Note that we introduce techniques that allow to delay completeness checking to a later
point in time, which could be used to overcome this issue. It is based on temporal
features, which are explained in 3.7.1 on page 33.

3For example, consider a transaction that inserts a value and immediately deletes it again, so that it
never materializes in the database. Even if that tuple would have contributed to completeness, it
never has been visible from outside of the transaction, so it is irrelevant.

3 Approach 24

In any case, implementations will have to ensure that completeness checking does not alter
the behavior of the database, such as causing more rolled back transactions. However, it
might be acceptable to increase the time a transaction needs to complete (cf. 3.2.5).4

To sum it up, we have three choices for completeness checking: First, to check at the end of
a transaction, guaranteeing that all versions are checked immediately. Secondly, to check
after transactions, which could lead to lost versions. Thirdly, to check after transactions
are complete using a temporal table logging transaction’s changes, guaranteeing that all
versions are checked but at the price of increased storage requirements and with possibly
longer response times between reaching completeness and notifying about it.

3.5.3 Intra-transaction completeness checking

Working with a transaction typically consists of at least two phases: First, it is used
to access, modify, insert and delete data. Secondly, it is committed. The result of
a commit can either be a rollback or, if successful, all modifications are stored. The
intra-transaction completeness checking approach tests the database for completeness
after the user made all changes and before the database commits. It intercepts commits
and executes the completeness checks within the transaction before the database commits
it. At this point in time it is safe to assume that no changes by other transactions are
visible if the database provides snapshot isolation. Note, though, that this approach
might slow down user transaction processing (cf. 4.8.1).

Snapshot isolation In 3.2.5 we defined the requirements of sandboxes and noted that
sandboxes must not cause additional rollbacks compared to a database without sandboxes.
This requirement can only be fulfilled by snapshot isolation.

Assume that a database uses two-phase locking to prevent concurrent updates of data
and to avoid deadlocks. The notation used here distinguished between read (r) and write
(w) operations on a specific datum. This is important because for the first occurrence of
a datum within a transaction a lock is acquired. There are two concurrent transactions,
T1 and T2, each writing a different datum:

T1 = w(a)
T2 = w(b)

Both transactions can be executed as there is no conflict between them. Now, there
exists a sandbox with a completeness constraint requiring both values a and b, executed
within the two transactions. The two transactions now become:

T1 = w(a)r(a)r(b)
T2 = w(b)r(a)r(b).

4This is not entirely true because longer running transactions could cause more rollbacks, a fact that
has to be taken care of.

3 Approach 25

When executed concurrently, both transactions perform their write operation, thus
acquiring locks on a and b. During the completeness checking, each transaction also needs
to access the datum locked by the other transaction, leading to a circular data dependency,
which is a deadlock. Here, the database would rollback one of the transactions, but
this is not desired. This kind of problems can only be solved correctly using snapshot
isolation. In this isolation level the database appears to take a snapshot at the beginning
of a transaction. Thus, r(a)r(b) would be executed on data that was in the database at
the beginning of the transaction if not locally updated.

3.5.4 Naïve algorithm

The naïve approach is to check for completeness just before a transaction commits, using
the intra-transaction completeness checking approach. A database needs to provide the
hook for this operation to be injected. For the naïve implementation, we assume the
database provides an interface to register transaction callbacks. All following snippets
are based on Java-like code.

We call this implementation naïve (in contrast to more sophisticated approaches) because
it checks completeness for each version instead of combining knowledge gained from a
previous version with the current version. In section 3.8, we present different approaches,
which still have the naïve approach in mind but optimize certain operations. We are
using a naïve approach as it best shows the desired behavior.

For convenience we are using an abstract Version type to denote a monotonically
increasing logical clock. In a real-world implementation, this could be a sequence number,
a transaction identifier, or a real time value.

Database and sandbox interfaces

The database has to provide a set of functions in order to implement completeness
checking. Most importantly, it has to offer some kind of hook into the transaction
processing system. For now, we assume that there exists such a function. In a real
database, this might not exist and would need to be implemented, either inside the
database or using a middleware approach.

Listing 3.8 shows the interface the database implements. It provides a specialized observer
pattern, a software design pattern to observe another object for defined events, such as
state changes or occurring events. In this case, we use it to hook into the transaction
processing system. The database will invoke all registered callbacks before committing
a transaction. In our simplified model, the database also exposes the current version
identifier, and allows to run a query on a specific version of the database. This is
comparable to the time-sliced query syntax in SQL:2011 [9].

3 Approach 26

Listing 3.8: Database definition
1 interface DB {
2 void register(SandboxInstance); . Register a callback
3 void unregister(SandboxInstance); . Unregister a callback
4 Version currentVersion(); . Returns current head version
5 Result query(Query, Version); . Queries a database version
6 }

1 class SandboxDefinition {
2 String name; . Sandbox name
3 Query Qs; . Rewritten completeness constraint ps

4 Map<Relation, Query> Qr; . Rewritten visibility constraint set Pr

5 Result query(Query, Version); . Query the sandbox
6 }

The database stores sandbox definitions, consisting of a name, a completeness predicate
and relation predicates. For clients, a sandbox definition also provides a query method
to query a specific version of the database while applying the relation predicates. A
sandbox definition has the structure shown in listing 3.9, which directly corresponds to
the SQL syntax to create a sandbox shown in 3.3.1. Listing 3.9 shows the data stored by
a sandbox definition in pseudo-code.

Sandbox instances

While the sandbox definition is very close to the CREATE SANDBOX command defined
in 3.3.1, creating a sandbox instance is somewhat different. For a sandbox instance, we
map the mode setting to a concept covering all operators instead of having different
instances for each concept. The temporal completeness operators are expressed using
a time span and a number of expected and encountered complete versions, using the
mapping described below. The time span is expressed as versions numbers, consisting of
a start and end version number. The end is non-inclusive. The pseudo-code showing the
sandbox instance interface is shown in listing 3.10.

Now The now operator is equivalent to checking for the next complete version with
a minimal time span, e.g. the current time plus the smallest time unit that is
non-zero. Translated to a version, this means the current version as start and the
next version number as the end of the checked time span. The user is interested in
exactly one complete version, or none if the current version is not complete.

3 Approach 27

Listing 3.10: Sandbox instance
1 class SandboxInstance {
2 SandboxDefinition sandbox; . Reference to sandbox
3 Version start; . First version to consider
4 Version end; . Last version to consider
5 int expectedCS; . Number of expected complete versions
6 int encounteredCS; . Number of encountered complete versions
7
8 process(); . Process request
9 callback(Version currentVersion); . Called by the database
10 checkVersion(Version i); . Test and act on complete version
11 }

Next The next operator is equivalent to checking for a single complete version either
using the default time span (now until indefinite future) or a user provided time
span.

Last The last operator is equivalent to looking for one complete version beginning at
backwards from the end of the time span, which can be user defined. The default
time span starts at the first database version and ends at the current version.

Whenever a user queries data within a sandbox, the database creates a sandbox instance
using the user-provided temporal completeness operator. Also, we use a counting approach
to remember how many complete versions the user requested and how many have been
encountered so far. The sandbox instance pseudo-code is shown in listing 3.10.

Naïve completeness checking

The naïve algorithm checks for completeness after every transaction without leveraging
any prior knowledge or sharing between sandboxes. It conceptually consists of two parts.
The first part is responsible for checking existing data in the database, i.e. past data,
while the second part is listening for database callbacks and taking appropriate actions.
The database and the completeness algorithm implement the observer pattern. Listings
3.11 and 3.12 show the two algorithms. Here it can be seen that the naïve approach tests
each database version individually for completeness by iterating over individual versions
within the provided time span.

Next processing for past data just iterates over existing versions of the database and
checks each individually. For processing of new data, it uses the database callback to test
each new version individually. Past processing always waits until the database version is

3 Approach 28

Listing 3.11: SandboxInstance processing
1 public void process() {
2 if (start <= end) { . Now, next, Continuous processing
3 for (int i = start; i <= Math.min(end, DB.currentVersion()); i++)

{ . Processing previous versions
4 if (expectedCS <= encounteredCS) {
5 return; . Encountered enough complete versions
6 }
7 checkVersion(i); . Test version i
8 }
9 if (expectedCS > encounteredCS) { . Are more versions requested?

10 if (end <= DB.currentVersion()) {
11 notifyClient(end, false);
12 } else {
13 DB.register(this); . Register this SandboxUsage
14 }
15 }
16 } else { . Processing Last operator
17 if (start > DB.currentVersion()) {
18 DB.register(this); . Wait until end has been reached. . .
19 } else {
20 int i = start; . Iterate over versions from new to old as needed
21 while (i >= end && encounteredCS < expectedCS) {
22 checkVersion(i);
23 i--;
24 }
25 if (encounteredCS < expectedCS) {
26 notifyClient(end, false);
27 }
28 }
29 }
30 }

3 Approach 29

Listing 3.12: SandboxInstance callback
1 public void callback(int currentVersion) {
2 if (start <= end) { . Now, next, continuous processing
3 if (currentVersion >= end) { . Do we have to stop here?
4 notifyClient(end, false);
5 DB.unregister(this);
6 }
7 if (start <= currentVersion) {
8 checkVersion(currentVersion);
9 if (encounteredCS >= expectedCS) {

. Did we encounter enough complete versions?
10 DB.unregister(this);
11 }
12 }
13 } else { . Processing last operator
14 if (start <= currentVersion()) {
15 DB.unregister(this); . No more callbacks required.
16 int i = start; . Iterate over versions from new to old as needed
17 while (i >= end && encounteredCS < expectedCS) {
18 checkVersion(i);
19 i--;
20 }
21 if (encounteredCS < expectedCS) {
22 notifyClient(end, false);
23 }
24 }
25 }
26 }

3 Approach 30

Listing 3.13: Sandbox check version
1 public void checkVersion(Version i) {
2 Result = DB.query(sandbox.Qs, i); . Run ps on database version i
3 if (result.size() > 0) { . Is ps satisfied?
4 encounteredCS = encounteredCs + 1;

. Update encountered complete versions counter
5 notifyClient(i, true); . Notify the user a complete version has been reached.
6 }
7 }

Listing 3.14: Querying a sandbox
1 public Result query(Query q, Version i) {
2 for (Relation r : q.relations()) {

. Replace references to relations in Pr by their selection
3 if (sandbox.Qr.contains(r) {
4 q = q.replace(r, sandbox.Qr.get(r));
5 }
6 }
7 return DB.query(q, i); . Run adapted q on version i
8 }

equal to or past the end of the specified time span. At this point, it will iterate over past
versions in reverse, also checking each version separately.

Checking a single version for completeness The naïve implementation requires a
function to check a single database version for completeness. It takes a sandbox definition
and a version to compute completeness. If the version is found to be complete, it notifies
the client. The pseudo-code is shown in listing 3.13.

Rewriting queries applied on a sandbox Clients can query the database through
a sandbox. When an implementation chooses to use a middleware approach, queries for
that sandbox need to be rewritten such that all relations are replaced by the filtered
relations obtained from applying Pr. There are several possibilities to achieve this, for
example using views or materialized views or by adding the constraints to the query
directly. Here, we conceptually choose to replace references to relations in the database
by a selection of this relation, e.g. a query based on T would be rewritten to use σpT (T)
instead. The pseudo-code for this function is shown in listing 3.14.

3 Approach 31

3.6 Cost model and evaluation

The cost of computing completeness depends on several different implicitly defined
parameters in the algorithms of section 3.5. The analysis aims at providing an upper
bound of time complexity of those algorithms.

Querying a database This is the cost associated with executing a single query on a
specific version of the database. We consider the database to be a black box and
not part of our application, so we cannot give a more specific cost analysis than this.
However, there is a constant cost associated with preparing the query execution
plus a variable factor that depends on how much data is accessed and put out by
the database. Thus, we characterize it as a constant (C) plus a variable part.

cost(DB.query(q)) = C + sel(q) (3.19)

Checking version The cost of checking a single database version for completeness is
dominated by the cost of executing the completeness predicate ps, or more precisely,
the transformed query Qs. Thus, it is equal in magnitude to the cost of querying
the database.

cost(checkVersion) = cost(DB.query) (3.20)

Completeness usage time span Each sandbox instance has a start and end value. The
upper bound of completeness checks, or versions in that time span, is denoted by I,
which is

I = |start− end|. (3.21)

3.6.1 Continuous queries

To aid our analysis, we only consider continuous queries because all other temporal
completeness operators can be reduced to a continuous query. Continuous queries check
every version of a specific time span for completeness, not taking into account the number
of encountered complete versions. Thus, I is the number of versions the algorithm has to
work on.

Single sandbox instance

Assume that there exists a single sandbox instance operating in continuous mode. So,
the expected number of complete versions is equal to or bigger than I. Using this, the
cost of running the completeness check for the sandbox instance is

cost(SBI) = cost(DB.query) · I (3.22)

3 Approach 32

Single sandbox, multiple instances

In this case we assume a single sandbox of which exist multiple sandbox instances.
The naïve implementation does not combine completeness checking for several sandbox
instances and might execute the same query several times per version. Assuming there
are U sandbox instances, the cost is

cost(MSBI) = cost(SBI) · U
= cost(DB.query) · I · U

(3.23)

One observes that all sandbox instances using the same sandbox also share a common ps

represented by Qs in the naïve implementation. The result of Qs only depends on the
database version it is executed on, but does not change when executed multiple times on
the same version. Thus, it only needs to be executed once per version.

cost(MSBI) = cost(SBI) (3.24)
= cost(DB.query) · I (3.25)

Multiple sandboxes

Let S be the number of distinct sandboxes in the system. Two sandboxes are distinct
if their ps are different. The naïve implementation evaluates each sandbox instance
individually, resulting in a cost of

cost(MSB) = cost(MSBI) · S
= cost(DB.query) · I · S

(3.26)

3.6.2 Next and last temporal completeness operators

The cost analysis for the next and last temporal completeness operators is very similar.
As we do not know anything specific about the data, we cannot make any assumption on
the shape of the completeness function’s output.

3.6.3 Now queries

The now temporal completeness operator behaves differently, because we know it is only
executed a single time, removing the factor I encountered in the analysis of continuous
and next/last temporal completeness operators.

In conclusion, the performance of computing completeness version by version is close to
constant for each individual version and linear for an interval.

3 Approach 33

3.7 Required database features

In the previous sections we introduced several features our system should support. Our
goal is to implement those features on a regular relational database, using mostly SQL
to express operations. In order to provide access to past versions of the database, the
database system has to maintain a history of all changes. The most common, and, since
SQL:2011 [9], standardized technique is to have temporal tables with system time. Some
of our approaches also depend on database changes of the currently executed transaction
to be available in a special changelog table. Some database vendors include part of this
functionality in their software already, but as it is not commonly available, we decided to
implement it ourselves.

3.7.1 Temporal tables

A temporal table is an extension to regular tables that has a system time attribute added
to the relation. The system time describes when a tuple came into existence and when
it was removed. There are several possibilities to implement this feature on standard
databases. In the context of this work we use a simple variant of regular tables: shadowed
tables that contain the full history of a particular table. This is similar to the design
proposed by [10], only that we do not use a specifically optimized index.

For a relation with three attributes, e.g. R(a, b, c), there exists a temporal relation
RT (a, b, c, s, e) where s is the time a tuple came into existence, and e when it was
removed. For tuples that are not yet deleted, the end version is an infinite value.

3.7.2 Changelog tables

For some computations it might be required to store changes of a transaction in a separate
table. For this we introduce the concept of a changelog table, a table that stores another
table’s tuples that were deleted and/or inserted during a transaction.

Given a relation R(a, b, c), the changelog table would have the structure RC(a, b, c, δ)
where δ is the event type, which is either insertion or deletion. Updates to a tuple are
treated as deleting the old tuple and inserting the new one.

3.8 Optimization of completeness checking

The analysis of the naïve implementation has shown that the main cost is associated
with running a sandbox’s completeness predicate using DB.query. We propose different
optimization approaches, which are later to be verified. In general, we want to optimize
time and not space complexity. Many approaches towards the optimization of databases

3 Approach 34

already exist. We will shortly describe some common concepts and discuss their usefulness
towards the optimization of completeness checking.5

Database optimizations The standard approach for relational databases is to optimize
queries using optimized database features, e.g. indices, better query execution plans,
etc. Other optimizations include elimination of common subexpressions, query
rewriting, automatic view materialization, caching and so on.

We assume a database applies those optimizations, but this is not obvious, as we
consider the database a black box. It is outside of the scope of this work to analyze
each intra-database optimization and its effect on completeness checking, as this is
not fundamentally different to optimizing regular SQL queries.

Incremental computation Incremental view maintenance has been around for many
years as an optimization to keeping views up to date by incorporating changes
performed by a transaction. The idea is to rewrite queries such that they compute
the delta of their result based on the delta of input relations. As deltas are
considered to be small, this could provide a huge performance improvement. In
the case of completeness checking, this can be utilized and further optimized as,
according to 3.2, we are only interested in the cardinality of a set, not the actual
contents.

Temporal computation An orthogonal approach to checking completeness using the
database’s contents or changes at the end of a transaction is to run completeness
checks on the data history. This requires data history to be available as a temporal
table. This approach can be used to compute completeness of single versions, but
also of a range of versions.

As specified in the theory section (3.2), completeness predicates can be expressed by
relational algebra formulas with a quantification operator. Hence, we can try to optimize
the relational algebra operation to get a faster operation that gives the same result.
Databases perform those kind of operations, but, as we impose additional restrictions
on the completeness predicates we have more knowledge about the data. We also know
how changelog and temporal tables are behaving. Thus, we are able to apply more
optimizations.

3.8.1 Incremental processing

Incremental processing means that the result of a query is partially computed based on
changes of a transaction. We use a notation based on [7] and [21] that expresses the
previous version of an operation, the delta of the actions it performed and the version
after applying those changes.

5A detailed list of related work and techniques can be found in chapter 2 on page 9.

3 Approach 35

• pre is a function that returns a relation before executing a transaction.

• pst is a function that returns a relation after executing a transaction (post).

• dlt is a function that returns the difference between pre and pst (delta). It holds
that

pst(R) = pre(R)] dlt(R). (3.27)

The] operator applies the changes of the delta to the relation on the other side.
The delta contains both inserted and deleted tuples. We define the −∪ operator as
applying a delta in reverse:

pre(R) = pst(R) −∪ dlt(R). (3.28)

Both operators have a lower precedence than join operators.

• The functions pre, pst and dlt are commutative with selection:

σϕ(pre(R)) = pre(σϕ(R)) (3.29)
σϕ(pst(R)) = pst(σϕ(R)) (3.30)
σϕ(dlt(R)) = dlt(σϕ(R)) (3.31)

(3.32)

Using this notation we can show how relational algebra expressions can be transformed
to incremental processing. Note that the pst of an operation must be the same for
incremental and non-incremental computation.

Selection Selection is a simple operation that generates a new relation from an input
relation retaining those elements that match a predicate. Let R be an input relation and
ϕ a predicate. Then,

S = σϕ(R). (3.33)

Applying incremental operations we derive the following equation:

pst(S) = pst(σϕ(R))
= σϕ(pst(R))
= σϕ(pre(R)] dlt(R))
= σϕ(pre(R))] σϕ(dlt(R))

(3.34)

3 Approach 36

Join For joins, a similar transformation is possible. Let P and R be relations and S
their inner join. Then,

S = P on R. (3.35)

Applying incremental operations we derive the following equality:

pst(S) = pst(P on R) (3.36)
= pre(S)] dlt(P on R)
= pre(S)
] pre(P) on pre(R)] pre(P) on dlt(R)
] dlt(P) on pre(R)] dlt(P) on dlt(R)

= pre(S)
] pst(P) on dlt(R)] dlt(P) on pst(R)
−∪ dlt(P) on dlt(R)

(3.37)

3.8.2 Incremental processing of the completeness predicate/counting

Our goal is to apply incremental processing when counting the size of the sets. Without
loss of generality we use completeness predicates of the form (see formula 3.17)

|S| op n

where S is some relation, op is a comparison operator and n ∈ N a natural number. We
know that the comparison of two numbers is fast, so we need to improve the performance
of the count operator to determine the cardinality of a set efficiently. For general counting,
s = |S|, we can use the following approach:

s = |S|
= count(S)
= count (pre(S)] dlt(S))
= count(pre(S)) + count(dlt(S))

(3.38)

Note that the count of dlt can be negative, while the count of pre and pst is always positive
or zero. The values of pst(S) and dlt(S) are known at the end of a transaction, but not
necessarily the value of pre(S). As we are interested in the cardinality of the query’s
result, it is enough to remember the old count at the beginning of a transaction.6

An efficient incremental computation is one where the innermost operator is one of pre,
pst or dlt. This is because the sets of data before or after a transaction are known as
well as the delta. Also, every formula can be transformed into one that either depends
on pre or pst, but not both. This eliminates the need of the database to preserve the
before-state until the end of a transaction, as seen in formula 3.37.

6For concurrent transactions a different approach might need to be used.

3 Approach 37

Selection The counting selection operator can be transformed to an incremental variant
using the following transformation. Let s = |σϕ(R)|.

s =|σϕ(R)| (3.39)
= count(σϕ(R))
= count(σϕ(pre(R)] dlt(R)))
= count (σϕ(pre(R))] σϕ(dlt(R)))
= count(σϕ(pre(R))) + count(σϕ(dlt(R))) (3.40)

The resulting operation only depends on the previous result and the result computed
over the delta, thus it is efficient according to our initial definition.

Join Equivalently, the join operator can be transformed into an incremental counting
variant. Using above formulas and s = |P on R|, we get:

s =|P on R| (3.41)
= count(P on R)
= count(pre(P on R)] dlt(P on R))

= count
(
pre(S)

] pre(P) on pre(R)] pre(P) on dlt(R)

] dlt(P) on pre(R)] dlt(P) on dlt(R)
)

= count(pre(S))
+ count(pst(P) on dlt(R)) + count(dlt(P) on pst(R))
− count(dlt(P) on dlt(R))

(3.42)

We can see in formula 3.42 that the cardinality of the join result can be incrementally
computed. It does not need to be computed completely, only the changed rows have to
be used to update the count. This is because count(pre(S)) is known from the previous
version.

3.8.3 Temporal processing

Another approach to computing completeness is by using temporal features of a database
in order to access past versions. The temporal features are required to be able to execute
queries on past versions of the database and store tuples together with a system time
attribute. The system time attributes are logical time stamps indicating when a tuple
came into existence and when it was removed. Using this, we can formulate queries that
check whether a certain version is complete, and also, in a second step, if a range of
versions is complete.

3 Approach 38

vs e

Figure 3.2: Visualization of a temporal single version selection. Each line represents a
tuple. Only tuples marked with a solid line are included in the output.

3.8.4 Single version completeness checking

Checking a single version for completeness is very similar to checking a regular table
for completeness. A regular table contains only data visible in the latest version of the
database, but no previously deleted data. To run a completeness check, we select those
tuples from a temporal table that are visible at a given version.

Let RT be a temporal table. According to section 3.7.1 on page 33 it has additional
attributes s and e when comparing it to the relation R. s is the inclusive start time of a
tuple and e the non-inclusive end time of a tuple, e.g. it is visible in version s but not
anymore in version e. Given a version v, we can reconstruct the original relation at time
v using

Rv = σs≤v∧e>v(RT). (3.43)

Selection The relation of a specific version can be plugged into a regular completeness
predicate. If the selection predicate is σϕ(R) with version unspecified, we can use the
above approach to turn it into a selection predicate operating on a specific version:

σϕ(Rv) =σϕ(σs≤v∧e>v(RT)) (3.44)
=σϕ∧s≤v∧e>v(RT) (3.45)

Join As a relation at a specific version represents exactly the data that was visible at
this particular point int time, we can use it directly to compute joins. Let v again be a
version. Then,

Tv on Uv =πT (σs≤v∧e>v(T T)) on πU (σs≤v∧e>v(UT)) (3.46)

3 Approach 39

[u, v)
s e

Figure 3.3: Visualization of a temporal range version selection. Each line represents a
tuple. Only tuples marked with a solid line are included in the output.

1 2 3 4 8 9
Complete
versions →

→
Sweep line

s e

Figure 3.4: Visualization of a temporal range sweep line approach. Each horizontal
line represents a tuple, the vertical line is the sweep line. Below the tuples
complete versions are shown.

3.8.5 Version range completeness checking

A logical extension to checking a single version using temporal data is to check a range
of versions. Again, let RT be the temporal table for table R and u and v versions, such
that the range [u, v) is to be checked for completeness. The database can only return us
tuples that were visible at some point in the specified time span, but it cannot directly
tell us which versions meet the completeness constraints given by a specific sandbox
definition. It hard (if at all possible) to express this using SQL, so we use additional
software to implement this feature. The following expression selects all tuples that are
visible inside the specific time span [u, v). Figure 3.3 visualizes this.

R[u,v) =σs<v∧e>u(RT) (3.47)

In a second step the result needs to be ordered by s and e. Then, a sweep line approach
can be used to iterate over complete versions in the database. The sweep line approach
is visualized in figure 3.4.

3 Approach 40

Selection As it is the case for single version completeness checks, we can just plug in
the resulting relation R[u,v) into the completeness predicate σϕ:

σϕ(R[u,v)) =σϕ(σs<v∧e>u(RT)) (3.48)
=σϕ∧s<v∧e>u(RT) (3.49)

Join Joining two version ranges is not as simple as joining single versions. The issue is
that upon joining we have to ensure that the tuples being joined actually exist at the
same point in time, i.e. there exists a version where both sides are ‘alive.’

T[u,v) on U[u,v) =σs<v∧e>u(T T) on
T.s≤U.s∧U.s<T.e

∨ U.s≤T.s∧T.s<U.e

σs<v∧e>u(UT) (3.50)

3.8.6 For-all counting approach

The for-all operator introduced in the SQL extension section as shown in section 3.3.3 on
page 19 can be implemented using a counting approach similar to the above optimizations.
For-all queries have the following form:

∀x ∈ R : p(x). (3.51)

This is equivalent to the following expression (cf. 3.2.3):

0 =|R| − |σp(R)|. (3.52)

Using a counting approach, we can transform the equation to an incremental variant:

0 =|R| − |σp(R)| (3.53)
= count(R)− count(σp(R))
= count(pre(R)] dlt(R))
− count(pre(σp(R))] dlt(σp(R)))

= count(pre(R)] dlt(R))
− count(σp(pre(R))] σp(dlt(R)))

= count(pre(R)) + count(dlt(R))
− count(σp(pre(R))) + count(σp(dlt(R)))

(3.54)

The above expression can be computed incrementally because the last transaction’s
counts can be remembered and the difference to the new count can be calculated from
the transaction changelog.

41

4 Benchmark

The benchmark is used to compare different approaches and verify our performance
assumptions. We measure the response time for different completeness operator im-
plementations. We assume that the naïve approach is not good in all cases, and it is
in general better to compute completeness using less data, which can be achieved by
using changelog tables. We compare selection, join and for-all operators for live data
and selection and join for past database versions. The benchmark is implemented as
a middleware intercepting commit instructions for the database. It is written in Java,
using Java Database Connectivity (JDBC), and runs on Postgres. We use it to measure
the performance of the different approaches of testing if a certain database version is
complete. For this reason, we structure each transaction in the following distinct steps:

1. Prepare the database for the transaction. This includes clearing the changelog
table and saving a new time stamp plus transaction identifier in the database.

2. Run the user’s transaction while recording changes to the database.

3. Run each completeness operator.

For each of these operations we measure the time it takes to get a response from the
database plus processing the result locally.

The workload for our benchmark is based on the Transaction Processing Performance
Council C benchmark (TPC-C)1. TPC-C is a standard describing a workload to test the
transaction performance of databases [1]. We use an open-source implementation and
run it on top of our middleware software.

4.1 TPC-C

Each TPC-C update performs one of the following actions (the probability for each action
is shown in percent as defined in the TPC-C benchmark):

Payment An order will be payed, by adding the relevant details to the database. This
includes writing to the database (43%).

1 The TPC-C benchmark is used to evaluate the transaction performance of databases by simulating a
order/warehouse model with a generated workload

4 Benchmark 42

Listing 4.1: TPC-C selection-based sandbox
1 CREATE SANDBOX low_stock(IN :warehouse int, IN :item_id int)
2 WHEN
3 EXISTS (SELECT * FROM stock WHERE s_w_id = :warehouse AND
4 s_i_id = :item_id AND S_QUANTITY < 100)
5 WITH
6 warehouse w: w.w_id = :warehouse,
7 stock s: s.s_i_id = :item_id,
8 oorder o: o.o_i_id IN (
9 SELECT o_i_id FROM oorder o

10 INNER JOIN order_line ol ON ol.OL_O_ID = o.OL_O_ID
11 WHERE ol.OL_I_ID = :item_id
12 AND ol.OL_W_ID = :warehouse);

Stock level Check the stock level (4%). This is a read only transaction.

Order status Check the order status of a transaction (4%). This is a read only transac-
tion.

Delivery Updates an order to reflect the delivery status (4%). This involves reading,
updating and deleting tuples from the database.

New order Place a new order for some items in a warehouse (45%).

4.1.1 Sandboxes

We define three sandboxes for the benchmark, one based on selection and another one
based on a join. A third sandbox is based on a for-all query.

Selection sandbox

The selection sandbox is based on the stock relation and checks for items with low
stock. It takes a warehouse and an item as a parameter and is complete if the count (an
attribute) of that item is below 100. To the user it exposes just the chosen warehouse and
stock, plus all orders that include the particular item from the warehouse. The sandbox
definition is shown in listing 4.1.

4 Benchmark 43

Listing 4.2: TPC-C join-based sandbox
1 CREATE SANDBOX irregular_client
2 WHEN
3 EXISTS (SELECT * FROM order_line ol INNER JOIN order o
4 ON o.O_ID = ol.O_ID
5 WHERE o.o_ol_cnt = 5 AND ol.ol_amount > 9000);

Listing 4.3: TPC-C for-all sandbox
1 CREATE SANDBOX local_orders
2 WHEN
3 FORALL (SELECT * FROM orders o)
4 SATISFY (o.O_ALL_LOCAL = 1);

Join sandbox

The join sandbox is used to check for irregular clients, which are defined as having orders
with few items but a large amount of those items. It is not parameterized. Inside the
sandbox, it exposes all data. The sandbox definition is shown in listing 4.2.

For-all sandbox

To test the for-all operator, we define a sandbox that is complete when all items of an
order come from the same district. It is shown in listing 4.3.

4.2 Operators

For the benchmark, we implemented selection and join operators as well as a for-all
operator in SQL. We distinguish between three different operator types:

Basic A basic operator is an SQL expression working on regular tables. It can be used
to check whether the current version is complete or not at the end of a transaction.
The basic operator does not use the changelog or a temporal table to compute its
result.

Incremental An incremental operator is executed on different database versions in
sequence, in the order of a serialized history. The incremental operator can obtain
changes either from the changelog table or the temporal features a database offers.

4 Benchmark 44

Table changelog Temporal table
Basic I

Incremental I I/P
Temporal I/P

Table 4.1: Operators and tasks. Rows show operator types, columns database capabilities.
The letter I indicates that an operator can run inside a transaction, the letter
P means it can run on past data.

If it uses the changelog table it can only be run inside a transaction, because the
changelog table would be empty afterwards.

Temporal A temporal operator retrieves data within a time span that contributes to the
set of complete data. It does not follow an incremental approach, but receives all
relevant data in one database operation. A sweep line approach can be used to
compute the count of active tuples at each version.

4.3 Tracking changes: Triggers

SQL is a language to express commands of what a database should do with data. The
database then executes those commands based on the data it stores. While this is usually
intended, we need to be aware of all changes that are performed. This means we can
either restrict the statements that are executed to a set with predictable effects, or we
hook into the database to be notified about all changes. For our implementation we chose
the latter approach and implemented the change tracking inside the Postgres database.
We create triggers for all tables in our database reacting to updates, deletes and inserts.
The trigger in turn puts the tuple into the changelog table and updates the temporal
table accordingly.

4.4 Cost of maintaining temporal and changelog tables

Before testing the performance of individual completeness operator implementations, we
look at the overhead incurred by providing the infrastructure for our operators. The
infrastructure maintains the changelog table and updates the temporal table reflecting
changes performed by a user’s transaction. In our implementation, the changelog and
temporal table are maintained by triggers that are executed whenever a table is changed.
Users do not interact directly with the system-maintained tables. The measured costs
are shown in 4.8.1 on page 47.

4 Benchmark 45

4.5 Cost of selection completeness operators

We are interested in evaluating the cost of selection operators on both live data and past
versions. Selection only tests for the presence of tuples matching a given pattern. We
assume it is fast if there is an index that can be queried for existence. If there is no
index, selections are generally slow because the database needs to scan through all data.
The following list shows our assumptions:

Selection on base table plus index In this case we test for the presence of a tuple with
the relevant attributes being included in an index. In this case, responses are
expected to be very fast.

Selection on base table without index Here, the database potentially needs to scan all
tuples in a table, which is slow. We do not test this case in our benchmark.

Selection on changelog We incrementally compute the count of matching tuples. The
difference is computed from the changelog table. As the changelog is supposed to
contain a small number of tuples compared to its base table, tests both with and
without index are supposed to be fast. This is also related to the distribution of
updates as defined in the TPC-C standard. The changelog cannot be used for past
versions as it is transient.

Selection on temporal table, single version There are two approaches that fit into this
category: Either computing the whole result on that particular version, or just the
difference to the previous one. We expect the cost of obtaining tuples from the
temporal table to be at least as high as obtaining them from the base table. This is
because the temporal table stores at least the data that is stored in the base table
and continuously grows with every change.

Selection on temporal table, version range In this approach, we select all matching
tuples that intersect with the version range. A sweep line approach is used to count
the number of tuples at each version within the version range. The performance
of this approach depends on a variety of factors, but it has a benefit of limited
database communication.

4.6 Cost of join completeness operators

The operators shown below implement an inner join between two different tables. There
are no explicit foreign key relations defined on the database. Our assumptions are
described below. In general, joins always join two relations of the same kind. For
example, base tables are only joined with other base tables.

Join on base table A join on the base table has the same effect as if the user would
be working on a database without temporal and changelog features. The join is
recomputed completely on every invocation. We expect this to be slow.

4 Benchmark 46

Incremental join on changelog To speed up the processing of the join, we first compute
the full join and then incrementally update the result based on changes recorded in
the changelog table, joined with the corresponding base table. This is explained in
formula 3.42. We expect this to be fast.

Incremental join on temporal table The join can also be incrementally computed using
the temporal table, by joining the AS-OF version with the changes from the
other side of the join, and vice versa. This is essentially the same approach as
an incremental join on the changelog, but involves more data and, due to this, is
potentially slower.

Single version join on temporal table Joining past data might be required, and this
operator joins two tables at a given version. We assume this operator to be slower
than joining the base tables.

Range version join on temporal table This approach tries to compute the join on a
range of versions, as explained in formula 3.50. Depending on the time span to be
covered, this might be worse or better than checking each version for completeness.
The actual costs need to be benchmarked.

4.7 Cost of for-all completeness operators

The operators shown below compute the result of a for-all query. We only implemented
the for-all operator for live checking because it can be rewritten into an existential
operator.

Base for-all The base for-all operator implements a simple approach to check if the base
table is complete: It compares the counts of tuples in a relation to the counts of
tuples matching a predicate in that relation. We expect it to be slow as it needs to
scan through data.

Changelog for-all This implementation does the same as the base for-all operator but
uses the changelog table to incrementally compute the current counts. As the
changelog table is much smaller in size, it is assumed to be much faster.

4.8 Benchmark results

In the following we present our benchmark results and compare them to the above
assumptions. We test selection, join and for-all on live data (live processing) and selection
and join on past versions (past processing). Base approaches shown below set the baseline
for each operator in each category.

The scatter plots show the version on the x-axis and the average time to compute
completeness on the y-axis in milliseconds.

4 Benchmark 47

Co
mb
ine
d

De
liv
ery

Ne
wO

rde
r

Or
de
rSt
atu

s

Pa
ym
ent

Sto
ckL

eve
l

0.0

20.0

40.0

12.0

23.0

6.3 3.2 2.1 2.2

17.6

50.7

11.2
2.8 3.7 1.9

T
im

e
[m

s]

Without triggers
With triggers

Figure 4.1: Transaction performance with changelog/temporal features and without

4.8.1 Cost of changelog/temporal tables

We measured the cost of maintaining the changelog and temporal tables on Postgres
with a trigger-based implementation. The workload is a single-thread TPC-C update
process. We compared the results of our benchmark with changelog and temporal
features enabled or not. The results have been obtained from the same machine with
exactly the same settings otherwise. They are based on running 5000 individual TPC-C
transactions. Figure 4.1 compares the performance of running TPC-C with or without
additional features. The combined entry shows the average time it takes to run a
TPC-C transaction, the other entries list the average time a specific type of transaction
takes. While order status, payment and stock level transactions perform equally fast,
transactions involving data updates are significantly slower. A delivery transaction takes
more than twice as long, and a new order nearly twice as long.

To summarize, the performance of writing transactions is cut by half while reading is not
affected by the added functionality.

4.8.2 Live processing selection operators

In our benchmark we compare several approaches of selection completeness predicates to
each other, as shown in figures 4.2 and 4.3. Note that the selection is applied to a column
with a dedicated index, which is also present on the changelog and temporal table.

4 Benchmark 48

Ba
seF

ilte
r

CL
og
Inc
rem

ent
alF

ilte
r

Te
mp

ora
lIn
cre
me
nta

lFi
lte
r

Te
mp

ora
lR
an
geF

ilte
r

Te
mp

ora
lSi
ng
leF
ilte
r

Tp
ccV

ers
ion
Cr
eat
or

0.00

10.00

20.00

0.15 0.31 0.33 0.46 0.30

18.75

T
im

e
[m

s]

Figure 4.2: Performance of live selection

Figure 4.3: Live selection, version number versus average time in milliseconds.

4 Benchmark 49

Base selection (BaseFilterI)2 In the incremental case, the base selection is the fastest
approach to check a simple selection for completeness, because it is only an index
lookup and the SQL expression is very simple. This is the baseline for live selection
operators.

Changelog incremental (CLogIncrementalFilterI) Testing the changelog for complete-
ness is slower than using the base approach by running the selection on the base
table itself. The reason for this is simple: It counts tuples that match the selection
criteria, and counts both deletes and inserts. Due to this, the statement is more
complex than the base statement.

Temporal incremental (TemporalIncrementalFilterI) The temporal incremental approach
is about as fast as the changelog approach. This is due to the fact that the query
is about as complex as the one for the changelog table but possibly involves more
data.

Temporal single version (TemporalSingleFilterI) The temporal single version approach
(using the AS-OF style query) is faster than the range approach, but slower than
the base approach. This is expected, as its query is less complex compared to the
range approach, but compared to the base approach, the query is more complex,
and there is potentially more data involved.

Temporal version range (TemporalRangeFilterI) The temporal version range check is
the slowest, because it has a complex SQL expression and retrieves a lot of data
from the database.

All approaches are very fast, especially the base approach has a negligible cost if the
selection is based on an index lookup. The cost for the base approach is close to the
minimum of any SQL command, which consists of network communication, command
parsing and returning the results.

4.8.3 Live processing join operators

Joins in general are expensive operations because data of two or more sources needs
to be combined and matched. A join cannot be efficiently computed without proper
indices and advanced algorithms even for small datasets. In this benchmark, we test the
performance of an inner join. The results are visualized in figures 4.4 and 4.5.

Base join (BaseJoinI) The base join operator executes the join as specified by the user.
For processing live data it is the baseline for comparison. In our results it does
perform well, but in figure 4.4 it can be seen that it gets slower when the size of
the database increases.

2Names in parentheses reflect names in the scatter plot.

4 Benchmark 50

Ba
seJ
oin

CL
og
Inc
rem

ent
alJ
oin

Te
mp

ora
lIn
cre
me
nta

lJo
in

Te
mp

ora
lSi
ng
leJ
oin

Tp
ccV

ers
ion
Cr
eat
or

0.00

10.00

20.00

8.61

1.11 2.35

12.39

18.75

T
im

e
[m

s]

Figure 4.4: Performance of live joins

Figure 4.5: Live join, version number versus average time in milliseconds.

4 Benchmark 51

Changelog incremental join (CLogIncrementalJoinI) Incrementally joining the changelog
is the fastest approach in our test. It also shows an interesting pattern consisting
of two ‘levels’ in the scatter plot in figure 4.4. This is due to the fact that the
database realizes when there are no changes and the changelog is empty. In this
case, it does not perform any operation.

Temporal incremental join (TemporalIncrementalJoinI) The temporal incremental join
performs slightly worse than the changelog incremental join, due to the fact it has
a rather complex SQL expression and the table it operates on potentially contains
a lot of data. Still, performance is significantly better than with the base approach
because the actual join is computed with less data.

Temporal single version join CTemporalSingleJoinI) Recomputing the whole join based
on as-of-style queries using the temporal table is slower as the base join (as was to
be expected). It gets slower over time as more data is in the temporal table it is
working on.

Temporal range join3 The temporal range join does not perform well. This is mainly
related to the Postgres optimizer: It cannot create a good plan for the complex
join condition shown in equation 3.50 on page 40. In our tests, it took more than
1000ms to compute completeness on a range spanning one version.

4.8.4 Live processing for-all operators

The result of evaluating different for-all operator implementations is shown in figures 4.6
and 4.7. Note that the for-all operator is based on a selection of a column with index,
but as the index does not contain the cardinality of tuples matching a certain condition,
it can only be used to extract those tuples. Hence, we observe the following results:

Base for-all (BaseForAllI) The base approach simply counts the number of matching
tuples versus the number of matching tuples that satisfy the predicate. It is
relatively slow as the set of tuples needs to be computed explicitly by the database
in order to determine the count.

Changelog for-all (CLogIncrementalForAllI) The changelog-based algorithm is signifi-
cantly faster than the base for-all algorithm. This is due to the small number of
tuples that need to be considered when incrementally updating the completeness
state.

The result of this evaluation is that the changelog for-all approach is significantly better
than the base for-all approach – it even outweighs the costs of maintaining the changelog
table.

3not shown in scatter plot

4 Benchmark 52

Ba
seF
orA

ll

CL
og
Inc
rem

ent
alF
orA

ll

Tp
ccV

ers
ion
Cr
eat
or

0.00

10.00

20.00

12.61

0.28

18.75

T
im

e
[m

s]

Figure 4.6: Performance of live for-all

Figure 4.7: Live for-all, version number versus average time in milliseconds.

4 Benchmark 53

Figure 4.8: Past selection operators, version number versus average time in milliseconds.

4.8.5 Past processing selection operators

To compute completeness over past states using a selection operator yields interesting
results (figure 4.8).

Temporal incremental selection (TemporalIncrementalFilterP) The incremental selec-
tion operation is relatively slow as it needs to communicate with the database on
each version. It is the slowest variant in our test.

Temporal single selection (TemporalSingleFilterP) The temporal single selection oper-
ation also is afflicted by the communication problem the temporal incremental
selection suffers from. It is slightly faster than the incremental approach, though.

Temporal range selection (TemporalRangeFilterP) The temporal range selection only
selects data in a single operation. This causes a slightly increased initial cost, but
the cost for checking completeness on following versions is negligible. Thus, it
outperforms the other two approaches significantly.

4 Benchmark 54

Figure 4.9: Past join, version number versus average time in milliseconds.

4.8.6 Past processing join operators

The past join operator also shows clear results (figure 4.9).

Temporal incremental join (TemporalIncrementalJoinP) The temporal incremental join
has to select data from the database for every version it is checking for completeness.
It is not fast, but as expected, performs better than the temporal single join operator.
This is because the database has to retrieve less data for each version.

Temporal single join (TemporalSingleJoinP) The temporal single join operator is slow
as it computes the whole AS-OF style result for each version.

Temporal range join (TemporalRangeJoinP) The temporal range join operator is clearly
the best for computing complete versions of past database versions. This is due to
the fact that the operator can be expressed as a single SQL operation.

4.8.7 Conclusions

The evaluation of different approaches to implement various temporal completeness
operators has shown that there are significant differences in the performance of these

4 Benchmark 55

operators. As expected, selection is much faster than join, but depending on the setting,
joins can be optimized to reduce the cost compared to the base line – it depends on the
use case and environment whether this cost is acceptable or not. Looking at the past
operators we can see that it might be better to compute completeness at some point
after the transaction has completed at points in time when the database load is lower.

56

5 Summary

The main goal of this work was to propose a data completeness model for applications
accessing a combined data repository. It would allow applications to define constraints
that specify what data relevant to them would be complete. We introduced the sandbox
concept to provide applications an interface resembling a local database under their
possession. We proposed an implementation for sandboxes and analyzed how they can
be optimized. Last, we compared various optimization techniques to ensure the viability
of the sandbox concept.

The main result of our research is that the sandbox is viable for offering applications an
environment where they can express their own completeness and data visibility constraints.
We also showed that it is possible to define clear semantics based on a mathematical
model. Using this model, we were able to optimize certain classes of completeness
predicates in order to be able to quantify the costs associated with an implementation of
the sandbox concept.

5.1 Future work

While we researched the fundamentals for the sandbox concept and provided a first
approach to quantifying the costs of completeness checking and possible implementations,
there arose a magnitude of interesting problems to be studied.

5.1.1 In-depth analysis

We provided a first benchmark to test how completeness operators behave. This bench-
mark needs to be extended to include past for-all completeness operators. Also, using
different sandboxes and other use cases would be interesting and could lead to a better
understanding of how sandboxes behave with more and more complex data.

5 Summary 57

5.1.2 Punctuation

Punctuation is a concept where a data producer indicates the completeness of data by
supplying special information. This information can be in the form of a marker tuple.
Other applications can define sandboxes that are complete once the marker tuple is
present, enabling some form of communication. While not explicitly mentioned in the
text, we believe that punctuation can be implemented using selection operators.

5.1.3 Efficiently providing data

At the moment, sandboxes do not remember what part of data was visible in some
complete database version. To increase performance, a sandbox could remember which
tuples were visible inside a sandbox at which database version, using a specialized index.
This could prove useful if the same sandbox is queried repeatedly on the same range of
versions.

5.1.4 Remembering complete database versions

A sandbox’s completeness predicate evaluated on a specific database version always
yields the same result. In order to avoid recomputing completeness for database versions,
the sandbox could remember which versions are known to be (in)complete and use this
information to speed up finding the next or last complete version. A specialized data
structure is required that allows to query least greatest and greatest least neighboring
versions given a version to start at.

5.1.5 Branching and writes to sandboxes

There is one problem we did not cover: How to write to sandboxes. We only permit
writing to sandboxes if the complete version is the current maximum version of data
available in the database, because then it is equal to writing to traditional databases.
However, once we would allow writes to past versions many different interesting problems
appear. One field of study would be if it were possible to automatically reintegrate
branches, or how to merge changes from different branches.

58

Bibliography

[1] Transaction Processing Performance Council. TPC-C Benchmark Revision 5.10.1.

[2] Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and Peter
Widmayer. An asymptotically optimal multiversion b-tree. The VLDB Journal,
5(4):264–275, December 1996.

[3] Andreas Behrend, Christian Dorau, and Rainer Manthey. Sql triggers reacting
on time events: An extension proposal. In Janis Grundspenkis, Tadeusz Morzy,
and Gottfried Vossen, editors, Advances in Databases and Information Systems,
volume 5739 of Lecture Notes in Computer Science, pages 179–193. Springer Berlin
Heidelberg, 2009.

[4] Michael Böhlen, Johann Gamper, and Christian S. Jensen. Multi-dimensional
aggregation for temporal data. In Proceedings of the 10th International Conference
on Advances in Database Technology, EDBT’06, pages 257–275, Berlin, Heidelberg,
2006. Springer-Verlag.

[5] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From
data stream to complex event processing. ACM Comput. Surv., 44(3):15:1–15:62,
June 2012.

[6] Dengfeng Gao, S. Jensen, T. Snodgrass, and D. Soo. Join operations in temporal
databases. The VLDB Journal, 14(1):2–29, March 2005.

[7] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views
incrementally. SIGMOD Rec., 22(2):157–166, June 1993.

[8] Eric N. Hanson and Lloyd X. Noronha. Timer-driven database triggers and alerters:
Semantics and a challenge. SIGMOD Rec., 28(4):11–16, December 1999.

[9] ISO. ISO/IEC 9075-2:2011 Information technology — Database languages — SQL
— Part 2: Foundation (SQL/Foundation). International Organization for Standard-
ization, Geneva, Switzerland, December 2011.

[10] Martin Kaufmann, Amin Amiri Manjili, Panagiotis Vagenas, Peter Michael Fischer,
Donald Kossmann, Franz Färber, and Norman May. Timeline index: A unified data
structure for processing queries on temporal data in SAP HANA. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’13, pages 1173–1184, New York, NY, USA, 2013. ACM.

Bibliography 59

[11] N. Kline and R.T. Snodgrass. Computing temporal aggregates. In Data Engineering,
1995. Proceedings of the Eleventh International Conference on, pages 222–231, Mar
1995.

[12] Alon Y. Levy. Obtaining complete answers from incomplete databases. In Proceedings
of the 22th International Conference on Very Large Data Bases, VLDB ’96, pages
402–412, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[13] Leonid Libkin. Incomplete data: What went wrong, and how to fix it. In Proceedings
of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS ’14, pages 1–13, New York, NY, USA, 2014. ACM.

[14] Amihai Motro. Integrity = validity + completeness. ACM Trans. Database Syst.,
14(4):480–502, December 1989.

[15] Werner Nutt and Simon Razniewski. Completeness of queries over sql databases. In
Proceedings of the 21st ACM International Conference on Information and Knowledge
Management, CIKM ’12, pages 902–911, New York, NY, USA, 2012. ACM.

[16] Werner Nutt, Simon Razniewski, and Gil Vegliach. Incomplete databases: Missing
records and missing values. In Proceedings of the 17th International Conference on
Database Systems for Advanced Applications, DASFAA’12, pages 298–310, Berlin,
Heidelberg, 2012. Springer-Verlag.

[17] Simon Razniewski and Werner Nutt. Completeness of queries over incomplete
databases. PVLDB, 4(11):749–760, 2011.

[18] Betty Salzberg and Vassilis J. Tsotras. Comparison of access methods for time-
evolving data. ACM Comput. Surv., 31(2):158–221, June 1999.

[19] Ognjen Savković, Mirza Paramita, Sergey Paramonov, and Werner Nutt. Magik:
Managing completeness of data. In Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, CIKM ’12, pages 2725–
2727, New York, NY, USA, 2012. ACM.

[20] Richard T Snodgrass. The TSQL2 temporal query language, volume 330. Springer,
1995.

[21] Andrew Witkowski, Srikanth Bellamkonda, Hua-Gang Li, Vince Liang, Lei Sheng,
Wayne Smith, Sankar Subramanian, James Terry, and Tsae-Feng Yu. Continuous
queries in oracle. In Proceedings of the 33rd International Conference on Very Large
Data Bases, VLDB ’07, pages 1173–1184. VLDB Endowment, 2007.

[22] Donghui Zhang, V.J. Tsotras, and B. Seeger. Efficient temporal join processing using
indices. In Data Engineering, 2002. Proceedings. 18th International Conference on,
pages 103–113, 2002.

	Introduction
	Sandbox

	Related work
	Data completeness model
	Completeness checking

	Approach
	What is completeness?
	Theory
	Informal definitions
	Database
	Sandbox
	Completeness
	Sandbox goals

	SQL extensions
	Creating a sandbox
	Instantiating a sandbox
	For-all operator

	Use cases
	Business intelligence
	Bug tracker and universal quantification

	Implementation
	Workflow
	When to check for for completeness
	Intra-transaction completeness checking
	Naïve algorithm

	Cost model and evaluation
	Continuous queries
	Next and last temporal completeness operators
	Now queries

	Required database features
	Temporal tables
	Changelog tables

	Optimization of completeness checking
	Incremental processing
	Incremental processing of the completeness predicate/counting
	Temporal processing
	Single version completeness checking
	Version range completeness checking
	For-all counting approach

	Benchmark
	TPC-C
	Sandboxes

	Operators
	Tracking changes: Triggers
	Cost of maintaining temporal and changelog tables
	Cost of selection completeness operators
	Cost of join completeness operators
	Cost of for-all completeness operators
	Benchmark results
	Cost of changelog/temporal tables
	Live processing selection operators
	Live processing join operators
	Live processing for-all operators
	Past processing selection operators
	Past processing join operators
	Conclusions

	Summary
	Future work
	In-depth analysis
	Punctuation
	Efficiently providing data
	Remembering complete database versions
	Branching and writes to sandboxes

	Bibliography

