

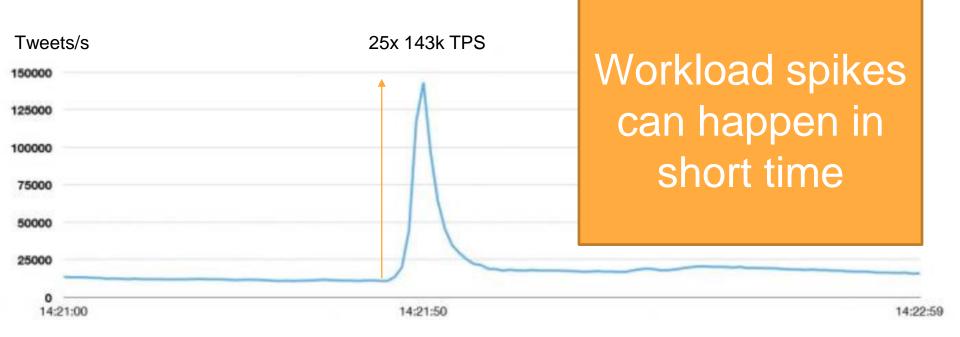
Latency-conscious dataflow reconfiguration

Moritz Hoffmann, Frank McSherry, Andrea Lattuada Systems Group, ETH Zurich

Supported by

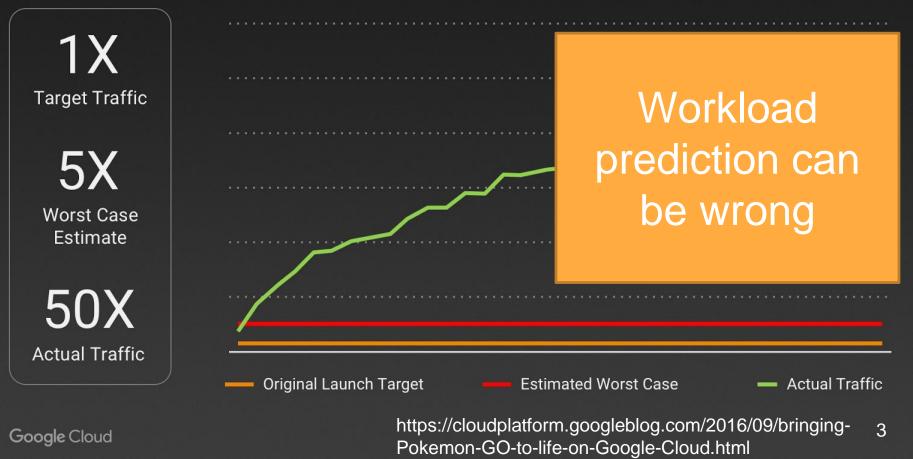
Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Workload spikes at Twitter

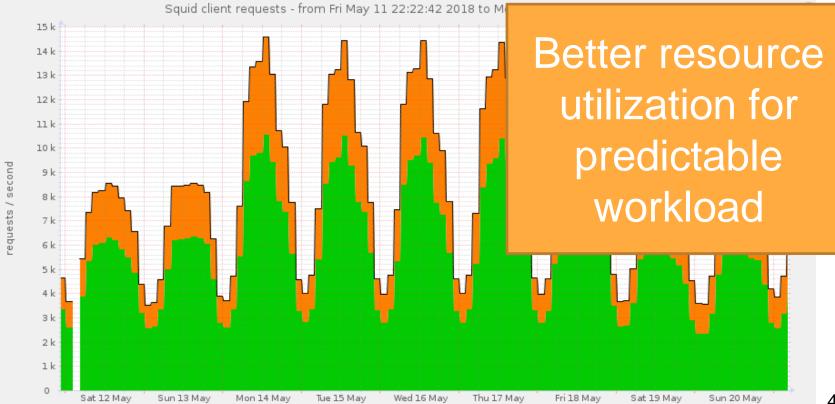


Twitter, tweets/s, initial airing of Castle in the Sky in Japan https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html

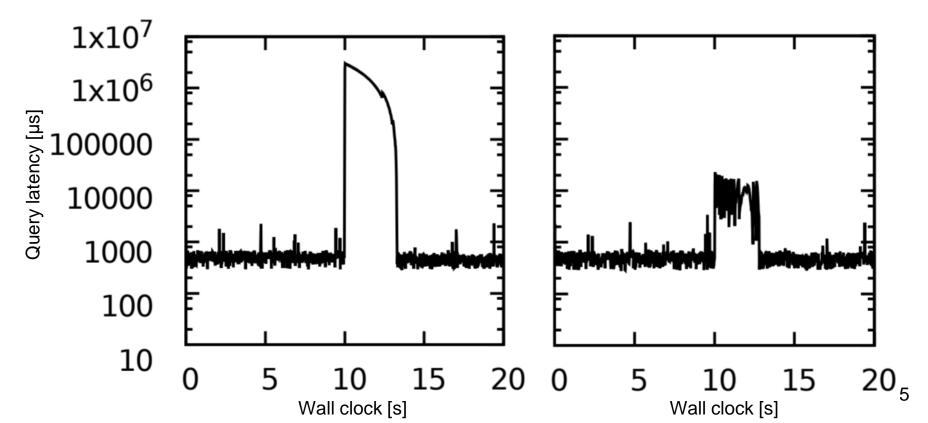
Cloud Datastore Transactions Per Second



Daily fluctuations: Serving tiles at OpenStreetMap



Long downtime causes high latency

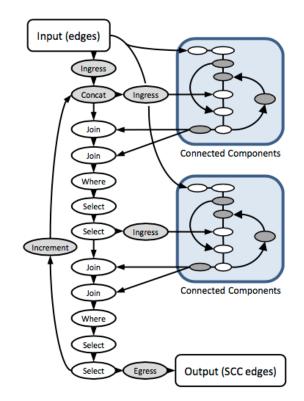


Distributed dataflow

Graph of edges and operators

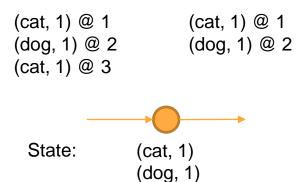
Timestamped records flow between operators

Operators can have state

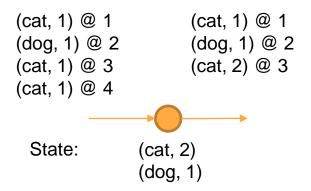


Credits: Frank McSherry, "Tracking progress in timely dataflow"

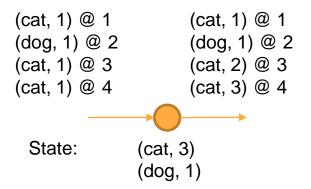
Word count example



Word count example



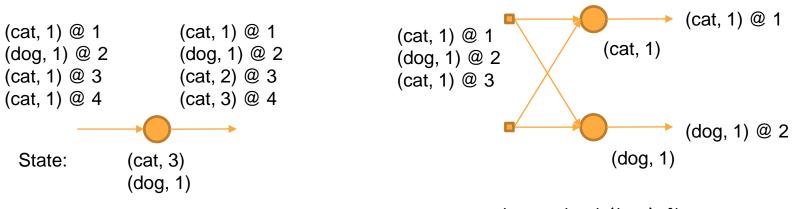
Word count example



Physical word count dataflow

Logical dataflow

Physical dataflow

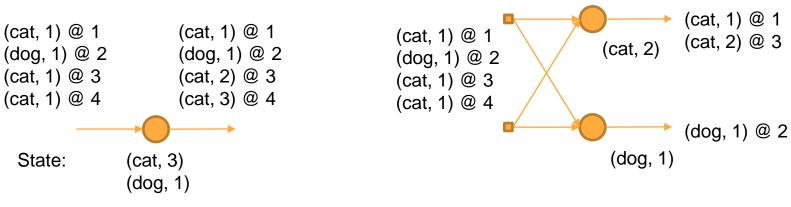


worker = hash(key) % N

Physical word count dataflow

Logical dataflow

Physical dataflow



worker = hash(key) % N

Physical word count dataflow

Partitioned Logical dataflow Physical dataflow Input, output, state (cat, 1) @ 1 (cat, 1) @ 1 (cat, 1) @ 1 (cat, 1) @ 1 (cat, 2) @ 3 (cat, 3) (dog, 1) @ 2 (dog, 1) @ 2 (dog, 1) @ 2 (cat, 3) @ 4 (cat, 2) @ 3 (cat, 1) @ 3 (cat, 1) @ 3 (cat, 1) @ 4 (cat, 3) @ 4 (cat, 1) @ 4 (dog, 1) @ 2 (dog, 1) State: (cat, 3) (dog, 1) worker = hash(key) % N**Reconfiguration:** Move keys between workers

What is the state of the art?

Stop-and-restart: Flink, Heron High latency spikes

Concurrent execution of new and old deployment: ChronoStream, Gloss Require extra resources

Decouple state from execution: MillWheel Latency limited due to externalized state

Pause-reconfigure-resume: StreamCloud, FUGU, Flux, Seep Limit latency spikes

How do we reconfigure a dataflow?

Adapt the number of workers Change partitioning strategy

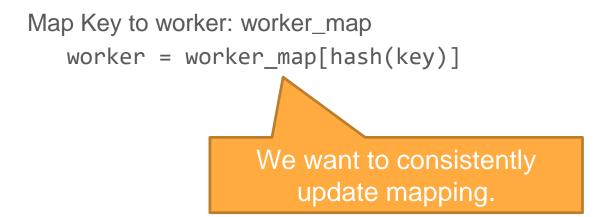
Correctness

Tunable parameters

Hashing with indirection

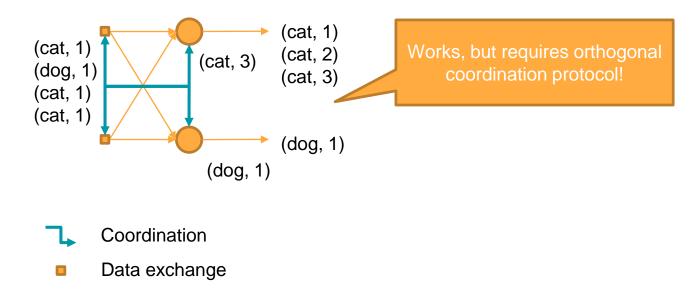
Hashing:

```
worker = hash(key) % N
```



Correctness: Coordinate worker assignments

All workers need to coordinate update to worker assignment

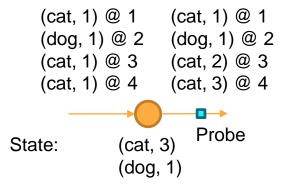


Timely's progress tracking

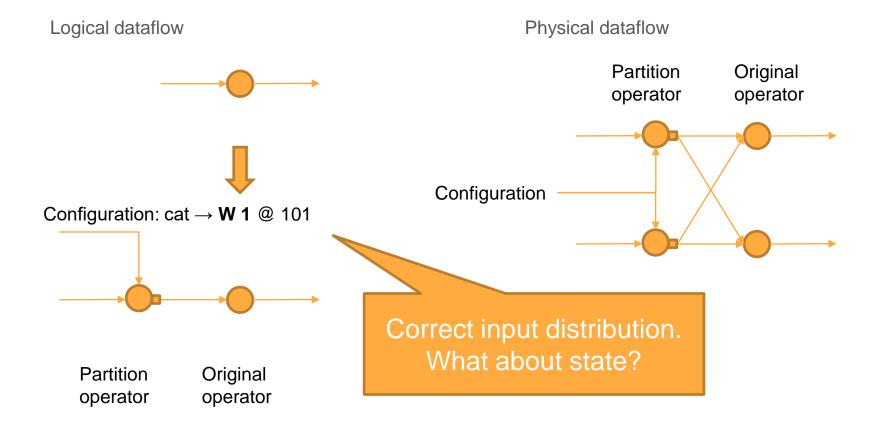
Each message has a timestamp

System will tell if more data with same timestamp exists

Timestamps and progress can be observed with probes



Configuration updates are timestamped data!

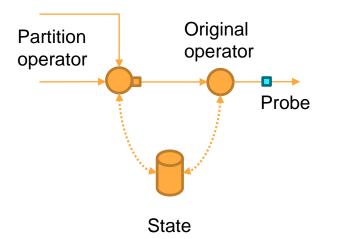


18

Coordinated state migration

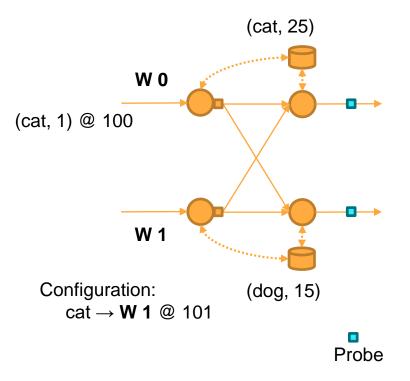
Logical dataflow

Configuration: cat \rightarrow **W 1** @ 101



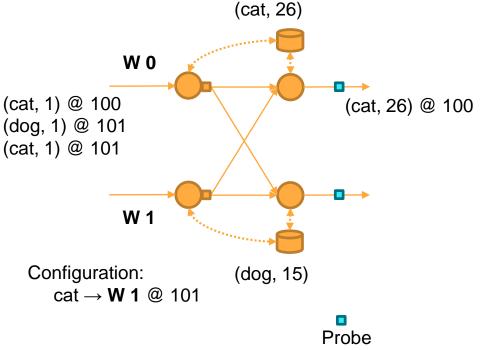
State migration mechanism

1. Precondition: Operator has processed all prior data



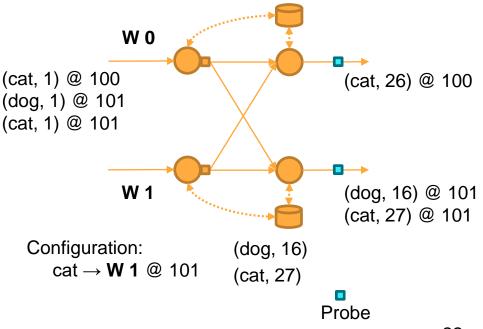
State migration mechanism

- 1. Precondition: Operator has processed all prior data
- 2. Migrate state: Move migrated state



State migration mechanism

- 1. Precondition: Operator has processed all prior data
- 2. Migrate state: Move migrated state
- 3. Resume: Continue processing data



Exploring the parameter space

All-at-once: Migrate subset of keys in single reconfiguration

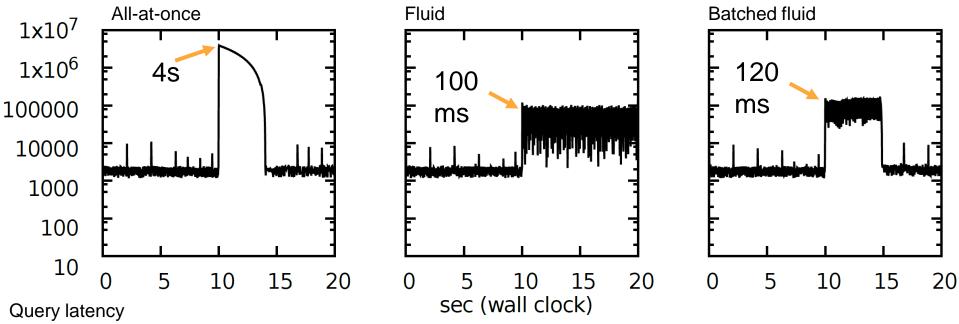
Fluid: Migrate small subset of keys, one after another

Batched fluid: Migrate small subset of keys, one after another, in parallel between unrelated workers

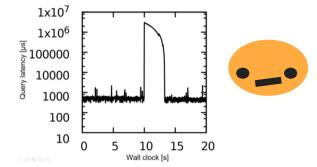
Evaluation: Reducing latency by orders of magnitude

40M keys, 1M queries/s, migrating from four to eight workers

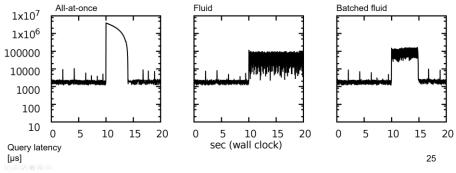
[µs]



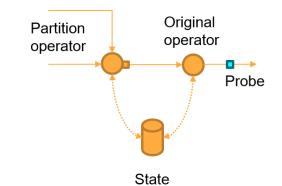
Conclusion



Stop-and-restart causes latency spikes



Mechanism exposes parameters to avoid latency spikes



State migration embedded in Timely dataflow avoids external synchronization

Moritz Hoffmann moritz.hoffmann@inf.ethz.ch