
Latency-conscious dataflow 

reconfiguration

Moritz Hoffmann, Frank McSherry, Andrea Lattuada

Systems Group, ETH Zurich

Supported by



Workload spikes at Twitter

2
Twitter, tweets/s, initial airing of Castle in the Sky in Japan

https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html

Tweets/s 25x 143k TPS

Workload spikes 

can happen in 

short time

https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html


3https://cloudplatform.googleblog.com/2016/09/bringing-

Pokemon-GO-to-life-on-Google-Cloud.html

Workload 

prediction can 

be wrong



Daily fluctuations: Serving tiles at OpenStreetMap

4
https://munin.openstreetmap.org/ tile.openstreetmap

Better resource 

utilization for 

predictable 

workload

https://munin.openstreetmap.org/


Long downtime causes high latency

5
Wall clock [s]

Q
u

e
ry

 l
a

te
n

c
y
 [
μ

s
]

Wall clock [s]



Distributed dataflow

Graph of edges and operators

Timestamped records flow between 

operators

Operators can have state

6

Credits: Frank McSherry, “Tracking progress in timely dataflow”

Flink,

Spark,

TensorFlow,

Heron,

Timely dataflow, ...



Word count example

7

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1)

(dog, 1)

State:



Word count example

8

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 2) @ 3

(cat, 2)

(dog, 1)

State:



Word count example

9

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 2) @ 3

(cat, 3) @ 4

(cat, 3)

(dog, 1)

State:



Physical word count dataflow

Logical dataflow Physical dataflow

10

(cat, 1)

(dog, 1)

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 1

(dog, 1) @ 2

worker = hash(key) % N

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 2) @ 3

(cat, 3) @ 4

(cat, 3)

(dog, 1)

State:



Physical word count dataflow

Logical dataflow Physical dataflow

11

(cat, 2)

(dog, 1)

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(cat, 2) @ 3

(dog, 1) @ 2

worker = hash(key) % N

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 2) @ 3

(cat, 3) @ 4

(cat, 3)

(dog, 1)

State:



Physical word count dataflow

Logical dataflow Physical dataflow

12

(cat, 3)

(dog, 1)

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(cat, 2) @ 3

(cat, 3) @ 4

(dog, 1) @ 2

worker = hash(key) % N

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 2) @ 3

(cat, 3) @ 4

(cat, 3)

(dog, 1)

State:

Partitioned

Input, output, state

Reconfiguration:

Move keys between workers



What is the state of the art?

Stop-and-restart: Flink, Heron

High latency spikes

Concurrent execution of new and old deployment: ChronoStream, Gloss

Require extra resources

Decouple state from execution: MillWheel

Latency limited due to externalized state

Pause-reconfigure-resume: StreamCloud, FUGU, Flux, Seep

Limit latency spikes

13



How do we 

reconfigure a 

dataflow?

Adapt the number of workers

Change partitioning strategy

Correctness

Tunable parameters

14



Hashing with indirection

Hashing:

worker = hash(key) % N

Map Key to worker: worker_map

worker = worker_map[hash(key)]

15

We want to consistently 

update mapping.



Correctness: Coordinate worker assignments

All workers need to coordinate update to worker assignment

16

(cat, 3)

(dog, 1)

(cat, 1)

(dog, 1)

(cat, 1)

(cat, 1)

(cat, 1)

(cat, 2)

(cat, 3)

(dog, 1)

Coordination

Works, but requires orthogonal 

coordination protocol!

Data exchange



Timely’s progress tracking

Each message has a timestamp

System will tell if more data with same 

timestamp exists

Timestamps and progress can be observed 

with probes

17

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 2) @ 3

(cat, 3) @ 4

(cat, 3)

(dog, 1)

State:
Probe



Configuration updates are timestamped data!

Logical dataflow Physical dataflow

18
Partition 

operator

Original 

operator

Partition 

operator

Original 

operator

Configuration: cat → W 1 @ 101
Configuration

Correct input distribution.

What about state?



Coordinated state migration

Logical dataflow

19

Partition 

operator

Original 

operator

Configuration: cat → W 1 @ 101

State

Probe



State migration mechanism

1. Precondition: Operator has processed all 

prior data

20

Configuration:

cat → W 1 @ 101

(cat, 25)

(dog, 15)

(cat, 1) @ 100

Probe

W 1

W 0



State migration mechanism

1. Precondition: Operator has processed all 

prior data

2. Migrate state: Move migrated state

21

Configuration:

cat → W 1 @ 101

(cat, 26)

(dog, 15)

(cat, 1) @ 100

(dog, 1) @ 101

(cat, 1) @ 101

(cat, 26) @ 100

Probe

W 1

W 0



State migration mechanism

1. Precondition: Operator has processed all 

prior data

2. Migrate state: Move migrated state

3. Resume: Continue processing data

22

Configuration:

cat → W 1 @ 101 (cat, 27)

(dog, 16)

(cat, 1) @ 100

(dog, 1) @ 101

(cat, 1) @ 101

(cat, 26) @ 100

(dog, 16) @ 101

(cat, 27) @ 101

Probe

W 1

W 0



Exploring the parameter space

All-at-once: Migrate subset of keys in single reconfiguration

Fluid: Migrate small subset of keys, one after another

Batched fluid: Migrate small subset of keys, one after another, in parallel 

between unrelated workers

23



Evaluation: Reducing latency by orders of magnitude

40M keys, 1M queries/s, migrating from four to eight workers

24

All-at-once Fluid Batched fluid

Query latency

[μs]

4s 100

ms

120

ms



Conclusion

25

Stop-and-restart causes latency spikes State migration embedded in Timely dataflow 

avoids external synchronization

Mechanism exposes parameters to avoid latency spikes

Moritz Hoffmann

moritz.hoffmann@inf.ethz.ch

mailto:moritz.hoffmann@inf.ethz.ch

