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Workload spikes at Twitter

2
Twitter, tweets/s, initial airing of Castle in the Sky in Japan

https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html

Tweets/s 25x 143k TPS

Workload spikes 

can happen in 

short time

https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html


3https://cloudplatform.googleblog.com/2016/09/bringing-

Pokemon-GO-to-life-on-Google-Cloud.html

Workload 

prediction can 

be wrong



Daily fluctuations: Serving tiles at OpenStreetMap
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https://munin.openstreetmap.org/ tile.openstreetmap

Better resource 

utilization for 

predictable 

workload

https://munin.openstreetmap.org/


Long downtime causes high latency
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Distributed dataflow

Graph of edges and operators

Timestamped records flow between 

operators

Operators can have state
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Credits: Frank McSherry, “Tracking progress in timely dataflow”

Flink,

Spark,

TensorFlow,

Heron,

Timely dataflow, ...



Word count example
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(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1)

(dog, 1)

State:



Word count example
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(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 2) @ 3

(cat, 2)

(dog, 1)

State:



Word count example
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(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 2) @ 3

(cat, 3) @ 4

(cat, 3)

(dog, 1)

State:



Physical word count dataflow

Logical dataflow Physical dataflow
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(cat, 1)

(dog, 1)

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 1

(dog, 1) @ 2

worker = hash(key) % N

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 2) @ 3

(cat, 3) @ 4

(cat, 3)

(dog, 1)

State:



Physical word count dataflow

Logical dataflow Physical dataflow
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(cat, 2)

(dog, 1)

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(cat, 2) @ 3

(dog, 1) @ 2

worker = hash(key) % N

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 2) @ 3

(cat, 3) @ 4

(cat, 3)

(dog, 1)

State:



Physical word count dataflow

Logical dataflow Physical dataflow

12

(cat, 3)

(dog, 1)

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(cat, 2) @ 3

(cat, 3) @ 4

(dog, 1) @ 2

worker = hash(key) % N

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 2) @ 3

(cat, 3) @ 4

(cat, 3)

(dog, 1)

State:

Partitioned

Input, output, state

Reconfiguration:

Move keys between workers



What is the state of the art?

Stop-and-restart: Flink, Heron

High latency spikes

Concurrent execution of new and old deployment: ChronoStream, Gloss

Require extra resources

Decouple state from execution: MillWheel

Latency limited due to externalized state

Pause-reconfigure-resume: StreamCloud, FUGU, Flux, Seep

Limit latency spikes
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How do we 

reconfigure a 

dataflow?

Adapt the number of workers

Change partitioning strategy

Correctness

Tunable parameters
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Hashing with indirection

Hashing:

worker = hash(key) % N

Map Key to worker: worker_map

worker = worker_map[hash(key)]
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We want to consistently 

update mapping.



Correctness: Coordinate worker assignments

All workers need to coordinate update to worker assignment
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(cat, 3)

(dog, 1)

(cat, 1)

(dog, 1)

(cat, 1)

(cat, 1)

(cat, 1)

(cat, 2)

(cat, 3)

(dog, 1)

Coordination

Works, but requires orthogonal 

coordination protocol!

Data exchange



Timely’s progress tracking

Each message has a timestamp

System will tell if more data with same 

timestamp exists

Timestamps and progress can be observed 

with probes
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(cat, 1) @ 1

(dog, 1) @ 2

(cat, 1) @ 3

(cat, 1) @ 4

(cat, 1) @ 1

(dog, 1) @ 2

(cat, 2) @ 3

(cat, 3) @ 4

(cat, 3)

(dog, 1)

State:
Probe



Configuration updates are timestamped data!

Logical dataflow Physical dataflow
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Partition 

operator

Original 

operator

Partition 

operator

Original 

operator

Configuration: cat → W 1 @ 101
Configuration

Correct input distribution.

What about state?



Coordinated state migration

Logical dataflow
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Partition 

operator

Original 

operator

Configuration: cat → W 1 @ 101

State

Probe



State migration mechanism

1. Precondition: Operator has processed all 

prior data

20

Configuration:

cat → W 1 @ 101

(cat, 25)

(dog, 15)

(cat, 1) @ 100

Probe

W 1

W 0



State migration mechanism

1. Precondition: Operator has processed all 

prior data

2. Migrate state: Move migrated state
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Configuration:

cat → W 1 @ 101

(cat, 26)

(dog, 15)

(cat, 1) @ 100

(dog, 1) @ 101

(cat, 1) @ 101

(cat, 26) @ 100

Probe

W 1

W 0



State migration mechanism

1. Precondition: Operator has processed all 

prior data

2. Migrate state: Move migrated state

3. Resume: Continue processing data
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Configuration:

cat → W 1 @ 101 (cat, 27)

(dog, 16)

(cat, 1) @ 100

(dog, 1) @ 101

(cat, 1) @ 101

(cat, 26) @ 100

(dog, 16) @ 101

(cat, 27) @ 101

Probe

W 1

W 0



Exploring the parameter space

All-at-once: Migrate subset of keys in single reconfiguration

Fluid: Migrate small subset of keys, one after another

Batched fluid: Migrate small subset of keys, one after another, in parallel 

between unrelated workers

23



Evaluation: Reducing latency by orders of magnitude

40M keys, 1M queries/s, migrating from four to eight workers
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All-at-once Fluid Batched fluid

Query latency

[μs]

4s 100

ms

120

ms



Conclusion
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Stop-and-restart causes latency spikes State migration embedded in Timely dataflow 

avoids external synchronization

Mechanism exposes parameters to avoid latency spikes
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