
Latency-conscious dataflow reconfiguration
Moritz Hoffmann

ETH Zurich
moritz.hoffmann@inf.ethz.ch

Frank McSherry
ETH Zurich

frank.mcsherry@inf.ethz.ch

Andrea Lattuada
ETH Zurich

andrea.lattuada@inf.ethz.ch

ABSTRACT
We propose a prototype incremental data migration mechanism
for stateful distributed data-parallel dataflow engines with latency
objectives. When compared to existing scaling mechanisms, our
prototype has the following differentiating characteristics: (i) the
mechanism provides tunable granularity for avoiding latency spikes,
(ii) reconfigurations can be prepared ahead of time to avoid runtime
coordination, and (iii) the implementation only relies on existing
dataflow APIs and need not require system modifications.

We demonstrate our proposal on example computations with
varying amounts of state that needs to be migrated, which is a
non-trivial task for systems like Dhalion and Flink. Our implemen-
tation, prototyped on Timely Dataflow, provides a scalable stateful
operator template compatible with existing APIs that carefully re-
organizes data to minimize migration overhead. Compared to naïve
approaches we reduce service latencies by orders of magnitude.
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1 BACKGROUND
Distributed streaming applications are by nature long-running and
may face varying and largely unpredictable workloads. A robust sys-
tem is required to adapt to changes in order to provide low-latency,
high-throughput, reliable and cost-efficient streaming services.

In this paper we consider adapting stateful streaming distributed
dataflow computations. A stateful dataflow computation has opera-
tors that rely on access to non-transient state, distributed across
computing elements, which may need to be migrated when adapt-
ing to changes in the workload. Specifically, we design, implement,
and evaluate a mechanism for state migration among dataflow
workers that is efficient, responsive, and minimally invasive.

The current state-of-the-art systems have three approaches to
provide scaling mechanisms. Firstly, systems such as Flink [2] and
Dhalion [4] rely on their fault-tolerance mechanism to capture
the state of the system and then restart their computations with a
different configuration. Secondly, systems such as SEEP [3] stop
and restart parts of a computation to limit the overall performance
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impact of scaling a dataflow. Thirdly, systems such as MillWheel [1]
externalize state to turn stateful operators into stateless variants at
the cost of reduced performance.

We propose a state migration mechanism that substantially re-
duces latency spikes during reconfiguration, by using the dataflow
system itself to perform progressive state migration. Our implemen-
tation is built on Timely dataflow1, and is implemented purely in
library code, requiring no modifications to the underlying system.

We should stress that while our prototype does migrate data,
the bulk of the effort in reconfiguration, it does not perform system
reconfigurations like adding or removing workers. This is a non-
trivial operation the existing systems do perform, and one which
shouldn’t be ignored. Our approach is aimed at a setting where a
large set of dataflow workers are available but otherwise idle, and
we bring them into the computation by migrating data to them.2

2 MECHANISM
We illustrate our mechanism in the context of a data-parallel fold
operator: given an ordered stream of (key,val) pairs, we want to
independently apply a function f : (state,val) → (state, result)
to state associated with each key, and produce the (key, result)
stream as output. The fold operator is commonly seen in the form
of data-parallel aggregation, but it is general enough to implement
more advanced state machine logic.

A typical implementation of fold distributes responsibility for
keys across a set of workers, and processes (key,val) pairs by rout-
ing them to the appropriate worker based on key. Each record is
somehow timestamped, and the timestamp order describes the order
in which (key,val) pairs from multiple sources should be applied.
As long as the distribution of keys is consistent, a single worker
receives all values for any one key and can correctly maintain the
associated state. However, any change to the distribution of keys
has the potential to result in incorrect results: initial state may be
missing and (key,val) pairs may be transiently mis-routed.

In modern dataflow systems the input timestamps do not need
to reflect the current system time, but can instead be logical, chosen
by the same external source that provides the data. Most dataflow
systems also do not require timestamps to be presented in order, and
instead require only that the source of data commit to advancing the
lower bound of input timestamps in order to make corresponding
progress in the outputs. At each location in the dataflow graph, the
dataflow system is able to conservatively report the timestamps
that might still be seen on input messages.

The main idea behind our mechanism is to use the timestamps of
the records themselves, and the progress information provided by
the system, to coordinate clean transitions from one distribution of
keys to another. We introduce a new stream of records describing

1https://github.com/frankmcsherry/timely-dataflow
2Timely dataflow workers which process no data do not participate in the underlying
coordination protocol, and can in principle remain idle until they do receive data.
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Figure 1: We replace a single distributed fold operator with
distributed fixer (F) and state (S) operators, where fixer
has (i) an additional reconfiguration input, (ii) a (key, state)
dataflow edge to state, and (iii) access to the state of keys
managed by the instance of state on the same worker.

reconfiguration requests, each timestamped from the same domain
as the inputs to the fold operator. We then use the dataflow mecha-
nisms themselves to both coordinate and effect the migration: (i) the
timestamps on (key,val) data indicate when we should switch the
routing of values to new workers, (ii) the system-reported progress
reveals when fold state reflects all values with pre-reconfiguration
timestamps (and is therefore safe to migrate), and (iii) the dataflow
channels themselves transport migrating state with timestamps
corresponding to the migration time.

This approach results in clean transitions, but it has the potential
to be disruptive in the moments of transition. Fortunately, we show
that the per-reconfiguration overheads are small enough that we
can perform a sequence of fine-grained migrations. Rather than
migrate all keys at once, stalling the computation for the duration,
we refine the space of keys to a granularity of our choosing and trade
off the latency of each reconfiguration against the total number of
reconfigurations.

2.1 Detailed description
A Timely dataflow operator like fold is specified from a stream of
input data by announcing a partitioning function for the stream,
and supplying the operator logic that should be invoked within
each worker. The Timely dataflow system instantiates multiple
copies of the operator, and supplies each instance with a steady
stream of data partitioned by key. Further, the Timely dataflow
system provides information about which timestamps have expired
and will not be seen in the input again. In the case of fold the
partitioning function should be a function of the key field, and the
operator logic likely contains a hash map from keys to state, and
the logic to apply received values to the state of the associated key
once their timestamp has expired.

Our implementation replaces a single fold operator with two
operators: fixer and state, sketched in Figure 1. These two oper-
ators are fully connected, in that each instance of fixer can send
data to each instance of state.

In addition to the stream of (key,val) pairs the operator takes
a stream of timestamped reconfiguration statements, of the form
(keys,worker ) indicating that a set of keys should now be mapped
to a specific worker (as of the timestamp). This stream represents
control signals that would normally be system-level interventions
as dataflow streams themselves. The fixer operator is responsible
for distributing the stream of (key,val) pairs to the state operator

in accordance with the current mapping from keys to workers. The
state operator behaves as if it were fold, maintaining state for
each key according to the values it receives.

In addition, the fixer operator has a second output along which
it may send (key, state) messages, to effect the migration of state
from its worker to another worker. The fixer operator has a handle
to the state of the state operator on the same worker, and can
inspect it to see the state that it may need to send to another worker.
The state operator has a second input on which it receives state
from the fixer operators and which it installs and then maintains
(until a future reconfiguration directs the state to another worker).

2.2 Migration logic
While the fixer and state operators now have sufficient dataflow
connections to effect the migration of state, we must carefully detail
the operator logic to ensure that this migration happens only once
all state updates are included in any migrated state.

Timely dataflow moves timestamped data among workers on
dataflow channels, but is also able to report theminimal outstanding
timestamps at any point in the dataflow graph. This information
tells operators about "progress" in the computation, and provides
guarantees that all updates with certain timestamps have been
retired from the computation. We will have the fixer operator
monitor these timestamps in the output of the state operator to be
certain that it only migrates state that reflects all updates through
the timestamps indicated by the reconfiguration requests.

Specifically, the fixer operator receives as input both times-
tamped (key,val) pair and (keys,worker ) pairs, but acts on neither
until Timely dataflow indicates that the timestamp is no longer
possible from the reconfiguration channel. This progress informs
us that fixer now knows the final destination for a timestamped
(key,val) pair, and will not prematurely migrate state that may
be pre-empted by an out-of-order reconfiguration request. Any
(key,val) data may now be routed according to the configuration
as of their timestamp, and any reconfiguration request is marked
as pending and awaits finalization before being effected.

The fixer operator also monitors the timestamps that might
result from the output of the state operator, which warns the
operator about the potential existence of (key,val) and (key, state)
records in flight elsewhere in the system. Once the potential output
timestamps of state match that of a pending reconfiguration, the
fixer operator can effect the migration with the certainty that the
state cannot experience a state transition at an earlier timestamp.
The fixer operator captures the state of the keys indicated by the
reconfiguration and sends them to the indicated worker with the
timestamp of the reconfiguration request.

If the fixer operator receives several reconfiguration requests
for future times, it can route any (key,val) tuples at any timestamps
t for which it knows it will receive no further reconfigurations (as
indicated by Timely dataflow’s view of the reconfiguration input).
Even in the absence of migrations, the reconfiguration input can
indicate that there will be no further reconfigurations for the fore-
seeable future, removing the fixer queueing for the common case
of (key,val) records timestamped within the foresworn time. This
trades off latency (buffering records) against adaptivity (foreswear-
ing reconfigurations for a time).
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2.3 An Example
Before evaluating our proposed mechanism, let’s walk through a
simplified example. Imagine a wordcount example where keys are
strings, and both values and state are integers that simply accumu-
late the total associated with each string.

Imagine we have two workers, and initially all data are at worker
0. Perhaps we have as input data (“doд”, 10) and (“cat”, 5) at times-
tamp 100, and (“doд”, 13) and (“cat”, 23) at timestamp 200. At times-
tamp 150 we have a reconfiguration request (“doд”, 1) and at times-
tamp 200 we have a similar reconfiguration request of (“cat”, 1).

Initially the fixer operator may receive the (“doд”, 10) and
(“cat”, 5) records, which it enqueues until its reconfiguration input
passes timestamp 100. There are no reconfigurations at or before
timestamp 100; this progress is eventually noticed, and the records
are distributed according to the current configuration. The state
operator observes that it will not receive inputs with timestamp 100
(neither other values, nor migrated state) and it applies the updates.

Now fixer receives the reconfiguration request (“doд”, 1) bear-
ing timestamp 150. At this point fixer has a potential migration
to perform, but it must await progress in its inputs and the out-
put of state. The inputs to fixer should advance past timestamp
150 at which point the fixer operator can observe that state
operator’s output reaches timestamp 150 (it does not pass times-
tamp 150, because the fixer retains the ability to send it data with
timestamp 150). The fixer operator can now migrate the state
for “dog", by peeking at the maintained state and producing an
output (“doд”, state) that it sent to worker 1. Worker 1 consumes
this input, and soon thereafter its state operator learns that its
inputs have now passed timestamp 150, and so it installs the state.
The timestamps in the output of state now increase beyond 150,
as neither messages nor operators may send at that time.

Perhaps fixer now receives the reconfiguration request (“cat”, 1)
bearing the timestamp 200, but not yet the data (“doд”, 13) and
(“cat”, 23) (also bearing timestamp 200). The reconfiguration must
await the output of state reaching timestamp 200, but it does not
need the timestamp to pass 200. The reconfiguration can be initiated
even before the recently received data are routed; a reconfiguration
only co-locates values and state at the indicated time, and only
needs to ensure that the state reflects prior values.

Once the data input to fixer reaches 200 and the reconfiguration
input passes 200, the migration can be initiated. At this point, the
data timestamped with 200 can be immediately routed and both
keys should arrive at worker 1, where they will be correctly applied
to the accumulation of strictly prior values.

2.4 Discussion
Many stateful dataflow operators can be independently migrated,
especially when downstream operators make no assumptions about
from which workers their input records will arrive. There are how-
ever situations in which multiple operators may need to be simulta-
neously migrated. Systems like Flink and Naiad [5], among others,
reveal that the outputs of operators like fold are now partitioned by
their key, and downstream operators may exploit this information
(avoiding redundant data-exchange). If we migrate only the up-
stream operator, this information becomes invalid and downstream
operators may malfunction as a result.

One resolution to this problem is simply to disable optimizations
that rely on specific data placement. A second alternative is to
simultaneously migrate the state of the other operators whose key
distribution needs to match the operator. Because our migration
mechanism performs exactly the migration as indicated by the
reconfiguration stream, rather than a best-effort approximation,
the same stream of reconfiguration requests can be applied to other
stateful operators that must be co-partitioned.

3 EVALUATION
Our goal is to evaluate the potential of our migration mechanism,
as compared with less carefully coordinated migration strategies.
To this end, we have implemented a prototype on Timely dataflow,
and a test harness with synthetic data that allows us to demonstrate
the mechanisms behavior in several situations. In order to evaluate
our proposed mechanism, rather than the performance of specific
systems, we create computations emulating the migration strategies
of some existing approaches.3

We consider executions in which the reconfiguration is either
sudden, in which all keys are redistributed at the same time, or
fluid, in which small sets of keys are migrated completely before
initiating the migration of the next batch of keys. The sudden
approach represents a system that is unavailable for as long as
it takes to migrate all state between workers; unlike Dhalion or
Flink we don’t shut down the system, but the migration does stall
all requests. The fluid approach represents our contribution, in
which the timestamps guide a progressive migration that regularly
returns to a consistent configuration that can service requests. We
also consider a batched fluid approach that migrates sets of keys so
that no worker is simultaneously involved in two migrations.

All of our experiments use a relatively simple word-counting
fold dataflow, in which the keys are strings and the values are
integers. We exploit none of the algebraic properties of counting
(e.g. pre-aggregation), and use counting only as a computation-light
state machine, to better study the effects of migration. In all our
experiments we bin keys into 256 groups and use this as the finest
granularity of migration, but this choice can be made differently
(or reconfigured itself, in principle).

Our experiments are performed on a 32 core Intel Xeon E5-4640
running at 2.40 GHz running two processes and using loopback
TCP to connect the two. In each experiment roughly half of the
migrating data changes workers, and all such data crosses between
processes. Migration across a more constrained physical network
should only make the migration more painful.

3.1 Sudden vs. fluid migration
For our first experiment, we demonstrate the difference between
sudden and fluid migrations. We start with a set of 10 million keys,
which are initially on one worker, and at 10 seconds migrate the
keys to be uniformly distributed between two workers. We intro-
duce values at a rate of 1 million per second, and record the latency
for the response to each as the time between the response returning

3The absolute performance of Timely dataflow can bemuch higher than Storm, Dhalion,
and Flink, and this decision is made to have a stronger baseline that avoids conflating
systems benefits with any benefits of our approach to migration.
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(a) Ten millions keys migrating from one worker to two workers
under a constant one million queries per second.
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(b) Forty millions keys migrating from four workers to eight work-
ers under a constant one million queries per second.
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(c) Tenmillions keys migrating from four workers to eight workers
under a variable 2.6 million queries per second.

Figure 2: Timelines for sudden, fluid, and batched fluid mi-
gration, each at 10 seconds, with elapsed seconds on the x-
axis and microseconds latency on the y-axis.

and the moment at which the input should have been available
(even if the system was not available to accept it yet).

Figure 2a reports the observed latencies when we migrate 10
million keys from one worker to two workers, using sudden mi-
gration and twice using fluid migration. The observed latency is
substantially reduced, from 4 seconds for the sudden migration to
roughly 20ms for the fluid migration. Additionally, time to return
to a stable latency is also reduced, from 4 seconds to 2.5 seconds,
in part because long queues do not build up.

3.2 Batched migration
For our second experiment, we increase the number of workers
from one and two to four and eight, and compare sudden and
fluid migration. With multiple workers, sudden migration may take
less time, but fluid migration as described above will still perform a
sequence of 256 migrations each of which involve only two workers,
and each of which may take no less time with additional workers.

To test this, we also consider a migration strategy that concur-
rently migrates sets of bins so that no worker is simultaneously
involved in two migrations, again retiring input (key,val) data
between the migrations. The intent is that these concurrent migra-
tions may come at little incremental latency, as the system is briefly
stalled for any migration, but will reduce the elapsed migration time
(for which the system experiences degraded latency) by keeping all
workers equally busy.

Figure 2b demonstrates these three migrations—sudden, fluid,
and batched fluid—among from four to eight workers with a pro-
portionately increased state size of 40 million keys. We see that
the sudden migration takes no more time to migrate (despite the
increased number of keys), whereas the fluid migration takes longer
to perform the complete migration as each individual bin is mi-
grated no more quickly. The batched fluid migration takes as long
as the sudden migration, with the latency of the fluid migration.

3.3 Loaded migration
For our last experiment, we consider the ability of the migration
mechanisms to migrate to more workers when under barely sus-
tainable input loads. Specifically, instead of a fixed load we generate
load using a square wave where the high load exceeds and the low
load is within the capacity of four workers and both are within
the capacity of eight workers. Our migration mechanisms respond
differently to load, and we might expect that the more responsive
progressive migration more quickly reaches a sustainable configu-
ration (once enough bins migrate to the additional workers).

Figure 2c demonstrates sudden, fluid, and batched fluidmigration
under barely sustainable load, using a square-wave load generator
with a period of two seconds. Although batched fluid migration
doesmaintain lower latencies, the faster stabilization does not occur,
suggesting that theremay bemore intelligent policy decisions about
how aggressively to migrate data versus service existing load.

4 CONCLUSION
We introduce a progressive migration mechanism that can be used
by dataflow systems to reconfigure the layout of state without
substantial interruptions to the availability of the system itself.

Importantly, we were able to do this without invasive changes
to the dataflow system. Our migration mechanism demonstrates
that one can use dataflow coordination mechanisms (timestamp
progress information) and dataflow channels themselves to effect
the migration. The only feature specific to Timely dataflow, not
commonly found in other systems, is the ability to observe state in
other local dataflow operators. This feature can be emulated with a
dataflow back-edge, creating a cycle in the dataflow, another feature
that is currently specific to Timely dataflow. Other systems should
be able to support a similar progressive migration mechanism, but
may require some extra-dataflow coordination.
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