
SnailTrail

Generalizing Critical Paths for Online

Analysis of Distributed Dataflows

Moritz Hoffmann, Andrea Lattuada, John Liagouris, Vasiliki

Kalavri, Desislava Dimitrova, Sebastian Wicki, Zaheer

Chothia, and Timothy Roscoe

Supported by

Reference Application
SnailTrail

Trace ingestion

Performance

summaries

Program activity graph

construction

Critical participation

computation and

activity ranking

trace streams

Profiling data

Flink,

Spark,

TensorFlow,

Heron,

Timely dataflow, ...

SnailTrail: Diagnosing latency issues in dataflows

“Where is the latency bottleneck in my computation?”

2

SnailTrail works online with minimal instrumentation

3

Instrumentation complexity

Online

SnailTrail

Coz:

Causal

Profiling

SOSP’15

Pivot

Tracing

SOSP’15

Offline
Less More

Vscope

Middleware

’12

Stitch

OSDI’16

Example 1: Metrics in Flink’s dashboard

4

Example 2: Task Scheduling in Spark

Driver

W1

W2

W3

5

SnailTrail, critical participation

Window

Conventional profiling

Window

%
 t
im

e

The real-world is more complex

Many tasks, activities, operators,

dependencies

Long-running, dynamic workloads

Bottlenecks not isolated

6
Credits: Frank McSherry, “Tracking progress in timely dataflow”

Conventional profiling can indicate wrong bottleneck

W1

W2

W3
serialization

waiting

deserializationprocessing

processing

7

Conventional profiling can indicate wrong bottleneck

W1

W2

W3
serialization

waiting

deserializationprocessing

processing

8

A quick review of

critical path analysis

9

The program activity graph

W1

W2

W3

u v

Nodes are timestamped events:

start or end of a worker activity

u = {
timestamp: t,
worker: 2

}

10

The program activity graph

W1

W2

W3
d

u v

Edges represent typed

activities

(u, v) = {
type: serialization,
operator: map,

}

11

The program activity graph

W1

W2

W3

12

Waiting activities

are never on a

critical path

Activities express

dependencies

All workers

terminate

The program activity graph

W1

W2

W3

Which activities delay the overall execution?

13

Classical critical path analysis

W1

W2

W3

14

What is the equivalent

of a critical path for

continuously running,

distributed streaming

applications,

with potentially

unbounded input?

There might be no “job end”

The program activity graph and

critical paths change continuously

Profiling information can quickly

become stale

15

Online critical path analysis

16

SnailTrail: Online analysis of trace windows

Input stream Output stream

17

Periodic

windows

Trace stream

SnailTrail

Windowed

performance

summaries

Program activity graph window

18

W1

W2

W3

ts te

All critical paths have equal length

W1

W2

W3

ts te

1

2

3

4

5

6

7

8

9

Cannot enumerate

all critical paths

19

Impractical!

Spark trace: 1021 critical paths

in 10 second window

Sampling critical paths misses critical activities

20

W1

W2

W3

ts te

We rank activities

across all critical paths

to capture their

relative importance.

Intuition: The more critical paths go

through an activity, the more critical

it might be

21

Counting over enumerating

22

W1

W2

W3

ts te

0

6 9

6

The Critical Participation metric

Fraction of an edge’s time contribution across all critical paths

Critical paths

through edge
Edge weight

Total number of

critical paths Can be computed without

critical path enumeration!

23

Reference Application
SnailTrail

Trace ingestion

Performance

summaries

Program activity graph

construction

Critical participation

computation and

activity ranking

trace streams

Profiling data

Flink,

Spark,

TensorFlow,

Heron,

Timely dataflow, ...

SnailTrail in action

24

✓

✓

SnailTrail

Trace ingestion

Performance

summaries

Program activity graph

construction

Critical participation

computation and

activity ranking

trace streams

Interpreting critical participation-based summaries

Stream of tuples:

(Activity type, Operator, Worker, …, Critical

participation)

Examples:

Activity type bottleneck analysis

Operator bottleneck analysis

(More in the paper!)

25

Activity type bottleneck analysis (Spark)

Apache Spark: Yahoo! Streaming Benchmark, 16 workers, 8s windows

Conventional profiling SnailTrail, critical participation

26

Window Window

%
 t
im

e

Operator bottleneck analysis (Flink)

27

Conventional profiling SnailTrail, critical participation
Read

sentences

Flatmap:

Split words

Count words

Increase
flatmap’s

parallelism!

Apache Flink: Dhalion WordCount Benchmark, 10 workers, 1s windows

%
 t
im

e
 p

ro
c
e

s
s
in

g

Seconds Seconds

SnailTrail performance

Low instrumentation overhead

Spark, TensorFlow

No observed overhead

Flink, Timely

~10% overhead compared to

logging disabled

High throughput

1.2 million events/s

8 workers

Always online

1s of traces in 6ms (100x)

256s of traces in < 25s (10x)

SnailTrail on Intel Xeon E5-4640, 2.40GHz, 32

cores, 512GiB RAM

Trace: Apache Flink Sessionization, 48 workers,

1s-256s windows

28

Summary

Conventional profiling is misleading

CP-metric: online critical path analysis

SnailTrail: online CP-based summaries

29

http://strymon.systems.ethz.ch/
https://github.com/strymon-system/snailtrail

