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Abstract
It is time to reconsider memory protection. �e emergence of large

non-volatile main memories, scalable interconnects, and rack-scale

computers running large numbers of small “micro services” creates

signi�cant challenges for memory protection based solely on MMU

mechanisms. Central to this is a tension between protection and

translation: optimizing for translation performance o�en comes

with a cost in protection �exibility.

We argue that a key-based memory protection scheme, comple-

mentary to but separate from regular page-level translation, is a

be�er match for this new world. We present MaKC, a new architec-

ture which combines two levels of capability-based protection to

scale �ne-grained memory protection at both user and kernel level

to large numbers of protection domains without compromising

e�ciency at scale or ease of revocation.

1 INTRODUCTION
For the last few decades, memory protection in computer systems

has been performed by the MMU alongside page-based translation.

�is has worked well in systems with 10s of cores and memory

sizes of up to a few tens of gigabytes of – volatile – DRAM.

A new class of computer is emerging, however, which is very

di�erent. “Rack-scale” or “memory-centric” computer systems

[3, 11, 21] have high core counts, extremely fast low-latency in-

terconnects, and a large (petabytes) distributed “pool” of byte-

addressable memory, most of which is persistent [11] (Fig. 1). Page-

based MMUs are likely a poor match to these machines for transla-

tion or protection.

�e problems with relying solely on the MMU for memory pro-

tection include:
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(1) �e very large physical address space (typically larger than

the available virtual address space) may require changing

translations without any change in the rights to access

physical frames [10].

(2) Machines that soley rely on the MMU for protaction typi-

cally incorporate multiple levels of physical address trans-
lation between the MMU and memory [13, 18, 20] (see

Figure 1) and/or remote memory copies such as RDMA.

�e MMU therefore lacks information about the eventual

physical address itself, causing a disconnect between CPU

and memory-side protection (and translation).

(3) Since memory, and the data therein, persists across process

lifetimes and even reboots, so must the protectionmetadata

for pages.

(4) Removing access rights to a page of data may become a

challenge in a large machine with MMUs, since it requires

identifying all page tables mapping the page and perform-

ing a distributed TLB shootdown.

(5) Since protection on each frame is applied in the MMU

rather than close to memory, any code able to program the

MMU is included in a single trusted computing base for the

entire machine. For small machines this is not a problem,
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Figure 1: An of example of complex dynamically changing
memory hierarchies
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Figure 2: Each thread and each memory block have associ-
ated keys. EPK and BPK respectively. If there is a match,
memory block is returned, otherwise a failure. Di�erent
thread keys can match the same block key.

for very large ones running multiple OSes and subject to

transient partial hardware faults, it is a major concern.

�is creates a dilemma. A single protection model covering the

complete (executing and persisted) state of the machine is essential

for correct programming and operation. Protection mechanisms

close to cores, ideally “in front” of the MMU (as with CHERI [37])

are desirable for ensuring individual threads are protected and that

runtime bugs are isolated. At the same time, protectionmechanisms

near memory itself are required for the scalability and assurance

reasons described above.

Matching Key Capabilities or MaKC is a novel capability security

model which resolves this dilemma. User processes hold keys autho-

rizing access to blocks of memory (independent of page translation),

while memory blocks themselves have an associated key. When a

memory access occurs, the keys must “match” (for some suitable

matching predicate) for the access to succeed. Since loading both

kinds of keys is performed by di�erent parts of the system, a variety

of distributed trust models can be implemented both on the CPU

side or on the memory side (see Figure 2).

MaKC is amendable to a number of di�erent implementations

(o�ering di�erent levels of assurance), ranging from a so�ware-

only approach using existing MMUs to a (more practically useful)

implementation with hardware support in processors and memory

controllers.

2 USE CASES
MaKC has far-reaching potential to address many security concerns

that arise from the complexmemory architectures that are emerging

in next-generation systems. In this section we highlight a few

individual use cases to show the most promising directions where

we envision MaKC could appear in the near future.

Fabric attached memory (FAM) is a recently proposed mem-

ory architecture that advocates sharing memory, not necessarily

through a coherent protocol, across a rack-scale fabric [4, 17, 28].

Each node on the fabric can map part of the FAM on-demand into its

physical address space, and then use it as regular memory. Physical-

to-fabric memory mappings can change at any time, for example

when permissions are revocated or memory reassigned. However,

because end-user applications only understand virtual addresses,

they may have kept pointers to FAM locations that have become

stale, and can cause memory corruption, errors, or security com-

promises. MaKC solves these issues, by comparing the keys before

de-referencing the pointer and hence detecting pointer validity in

time to prevent dangerous accesses.

RDMA is a standard networking technique that provides direct

access to the memory of a remote node, mediated by the network

interface at the memory’s home node. Memory regions need to be

registered before they can be used to obtain a handle (rkey) that
can be exchanged with the RDMA clients and used to prevent data

corruption and accesses beyond the registered address range. Mem-

ory regions also need to be pinned (i.e., their virtual-to-physical

mapping �xed and locked) so that an RDMA access cannot un-

intentionally (a�er a page swap) access another application data

segment. Using MaKC extends the rkey mechanism by matching

the keys and raising an exception if they do not match.

Distributed data access to services usually requires an agent

that mediates access to the data, through a strict API and secure han-

dles. While this approach works today it comes with the overhead

of a so�ware layer that may not be compatible with the tightly cou-

pled high-performance hardware mechanisms that are appearing in

rack-scale systems. Mechanisms such as fabric-a�ached memory or

RDMA do not require a mediator agent, or the associated so�ware

overheads, because they directly expose memory. However, objects

still need to be protected at �ne granularity, and that cannot be

achieved e�ciently using MMU and page-level granularity. Like

CHERI, using MaKC to protect distributed object handles allows

�ne-grain protection without compromising performance.

Micro-services are foundational building blocks that can be

used to compose complex distributed applications and are only

responsible for a small, well-de�ned, function of the overall system.

To reduce the overhead of a full virtual machines, micro-services are

typically deployed in containers, which requires making some secu-

rity tradeo�s. For example, a malicious container that manages to

compromise the underlying kernel would compromise the security

of all the other containers running under the same kernel. Using

MaKC, memory accesses can still be authenticated by hardware

using the matching key, thus preventing access from unwanted

threads, regardless of the state of the kernel.

Persistent active objects. Objects residing in non-volatile (or

fabric-a�ached) memory require methods for accessing the data.

Transferring execution and controlling access to those active objects

requires �exible and e�cient �ne grained protection mechanisms.

Page-based protection only works at large granularity, while ac-

cessing objects through supervisor calls or RPCs adds unnecessary

performance overhead. Like CHERI, MaKC provides �ne grained

memory protection and de�ned entry points (call gates) to access

the objects, and can also support remapping, if an additional level

of translation is needed, as it is the case for fabric-a�ached memory.

General intra kernel protection. Running device drivers in

the kernel is a practice that has been known to be vulnerable to

many security threats [12, 14]. Split kernels [27] try to protect

119



Separating Translation from Protection
in Address Spaces with Dynamic Remapping HotOS ’17, May 08-10, 2017, Whistler, BC, Canada

memory of one kernel subsystem from another by running security

critical functions in an inner kernel. Outer kernels then request

services through a well de�ned call interface. �is setup usually

involves hypervisor calls and nested paging introducing runtime

overheads. Split kernels can rely on MaKC for protection, eliminat-

ing the need of hypervisor calls and nested pages.

3 BACKGROUND
Many memory protections have been proposed over the years as

alternatives to page-based translation: segments, bounds registers,

hardware capabilities, memory keys MaKC borrows ideas from

some of these, such as key-based access and capabilities.

3.1 MMU-based
MMU-based page protection coupled access rights of a physical

frame to the structure of the virtual address space. �e access

principal is therefore the process, and any rights held by the process

are deleted when the process exits. Protection is set up by the kernel,

which must therefore be trusted.

Above this mechanism, a variety of high-level protection mea-

sures can be implemented in addition to the basic Unixmodel. Mech-

anism can be separated from policy [29]. Microkernels, for example,

isolate some access authority in server processes. Systems like

seL4 [23] and Barrel�sh [5] implement partitioned capability-based

protection in which the kernel limits which frames can be mapped

into an address space. Whereas Chorus [32] and Amoeba [30] rely

on sparsity and cryptography to make capabilities unforgeable.

Even within kernel mode, so�ware components can be isolated by

giving them an address space overlay and controlling all privileged

MMU update operations as done in ConspicuOS [9].

It is not even necessary to tightly couple translation to protection

when virtualization hardware is present: nested paging can be used

to modify translations without altering the protection rights on

frames [6].

Protection lookaside bu�ers (PLB) [25] separate translation from

protection information in TLBs. �e PLB caches the protection

information a domain has for a speci�c virtual memory page [24].

Many of the desired aspects of PLB’s were already implemented in

PA-RISC [36]. For a successful address translation the process ID

bits in the PLB must match.

However, all MMU-based protection models su�er the problems

identi�ed in Section 1: enforcement for a given page occurs close to

each core, is distributed throughout the machine, relies on trusted

so�ware on every core in the system, and requires an additional

(unspeci�ed) mechanism for persisting metadata.

3.2 Hardware Capabilities
Systems like CAP [31], and StarOS [22] provide instruction set ex-

tensions and special registers for object level protection. Recently,

new systems were developed to revisit hardware capabilities. Sys-

tems without compatibility requirements (e.g. M-Machine [7]) and

with the ability to run normal programs (e.g. CHERI [37]) pro-

vide architecture-supported capabilities. �ey are interpreted by

hardware as bounded virtual address pointers into tagged memory

which determines whether the value stored is a capability or regular

data. CHERI capabilities can therefore provide e�cient �ne-grained

protection within an address space. Revocation is not a problem

when using the MMU, process exit removes all rights and in a single

address space model, garbage collection can be used to invalidate

tag bits. Since CHERI capabilities apply to a virtual address space

they cannot be shared between di�erent address spaces or persisted

across process invocations in their current form. Moreover, they

sit between so�ware and the MMU and have the same issues as

MMU-based protection.

However, CHERI does associate protection rights with individ-

ual threads (via capability registers) independent of page tables,

and so demonstrates how conventional user-space code can carry

authorization information while executing and pass it through to

the system hardware. MaKC adapts this scheme to implement the

user-facing aspect of its capability system.

CODOMs [34] is similar to our work in that it integrates keys

with pages and combines keys with capabilities. Target architec-

tures and goals are di�erent. Our work is primarily focused on

rack scale systems and persistent memory with capability enforce-

ment close to the memory. CODOMs is focused on code-centric

memory domains. �ey both enable simple and e�cient capability

revocation.

3.3 Memory keys
S/360 [2] is arguably the �rst system to introduce the concept of

memory keys. It divided the physical address space into equal sized

blocks each with a memory key. �ere is also another key that is

part of the program status register. Access is granted to a block if

the two keys match. �is is similar to MaKC. Processors such as PA-

RISC [16] and Itanium [19] employ keys to protect memory though

they tend to apply keys to virtual memory and at the granularity

of pages. Memory keys are becoming mainstream again, Intel is

proposing adding them to future processors [8]

KeyKOS [15] and later EROS [33] use keys to refer to a �xed

number of persistent pages and nodes which make up the entire

state of the system. Pages of 4kB in size create segments which form

the address space of domains holding data and code. Nodes cannot

be directly accessed but provide an interface through key invocation.

Similar to MaKC, the keys of KeyKOS consists of multiple �elds that

indicate the object type and value (address of the object). However,

�ne grained access to pages is not supported by KeyKOS.

4 MATCHING KEY CAPABILITIES (MAKC)
MaKC divides the last level of a complex memory hierarchy, such

as the one shown in Figure 1, into equal sized blocks. Each block

has an associated key (or capability) called the Block Protection Key

(BPK). In addition, each execution hardware thread has at least one

associated key termed the Execution Protection Key (EPK). EPKs

are part of the processor’s status registers, equivalent to capability

registers in CHERI [37]. On each memory access, hardware auto-

matically compares the BPK against the EPKs. Access is allowed on

a match. Access is blocked and exception thrown on a mismatch.

�e so�ware exception handler may check the missing key against

a larger list of keys maintained by so�ware. Note that our model is

equally suited for variable sized blocks, however �xed sized blocks

simplify management.
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Figure 3: �e MaKC formats

MaKC like CHERI is a hybrid capability model that blends con-

ventional MMU-based virtual memory with a capability-system

model. Keys can be modi�ed from supervisor state but entering

that state is not much more costly than entering a user state or

crossing between user states as supervisor state are accessed via

call gates just like in CHERI [35]. Keys enable both data access and

execution control through a call gate model. Because there are both

data and execution keys, it enables �exible protection models for

both user and supervisor state as well as across di�erent users.

4.1 Formats
MaKC has in-memory and in-transit formats. MaKC uses the in-

memory format (Figure 3a) when the local node guarantees the

integrity of capabilities. �is is similar to how CHERI protects

capabilities from manipulation by non-privileged entities. A key

uniquely identi�es a block or set of blocks. For a system with com-

plex memory hierarchies as shown in Figure 1, a global memory

manager/allocator is responsible for generating keys. �e exact

mechanism employed is implementation dependent, but may in-

volve using a 64-bit counter, for example, which is incremented

whenever a new key is needed. Note that the address of each block

may be implicit especially if keys are closely integrated with a

CPU�s paging mechanism.

Since MaKC is primarily designed for rack-scale systems, which

are essentially distributed systems, it needs a format that prevents

the manipulation of capabilities as they travel from one node to

another over the interconnect. Figure 3b shows the in-transit for-

mat for keys. �e main di�erence between the in-transit and the

in-memory formats is the �ngerprint �eld, which contains a crypto-

graphically secure keyed-hashmessage authentication code (HMAC

[26]). �e authenticated hash can only be generated by authorized

entities and protects the capability values when being transferred

over untrusted channels. Such keys can be established (pre-shared)

in a number of ways between components, for exampleas part of

a trust establishment protocol when the system initializes. �e

HMAC ensures that a capability cannot be forged nor manipulated

in transit. Once a key arrives at its destination, the in-transit format

can be easily converted into in-memory format by stripping o� the

extra �elds. Keys in MaKC are globally unique making them well

suited for distributed systems with pooled memory.

4.2 Complex memory hierarchies
Figure 4 demonstrates with the aid of a simple example how MaKC

can be used to manage and secure address spaces in a rack-scale

system. �e �gure shows a node in rack-scale system with multiple
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Figure 4: Managing memory hierarchies with MaKC.

address spaces. Like in Figure 1, the �rst (virtual address space)

and the second (physical address space) levels of address space are

local to the node. �e third level of address space (real in Figure 4)

is memory mapped from a global memory pool, hence it is globally

unique i.e. has a unique tag. �e �gure only shows one node.

�e real address space is divided into blocks with a BPK associ-

ated with each block and the node has a processor that supports

matching key as described above. �e blocks are mapped into node

and then used for backing the physical address space. �e virtual

address space is then layered on top of the physical address space.

A page frame in the physical address space framing a virtual page

can be built from any combination of blocks. Notice that BPKs

are propagated across the address spaces allowing any memory

management system (e.g. MMU) to identify a block irrespective of

the address space. For example, the local node can detect when

the 0xbio5food block is replaced by the 0xbaaaad block as shown

in Figure 4 even though the virtual and physical addresses are

unchanged.

4.3 Supervisor state compartmentalization
Orthogonal to the call gate model described above, a local node

(i.e. a processor) can designate a particular key as the master key.

Keys can only be manipulated using special instructions which

must be executed from a master key block. Code in blocks not
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marked as master key blocks can access master key blocks by jump-

ing/branching using special instructions to entry points on desig-

nated gateway blocks. �e destination of a jump/branch must be

marked by a gateway instruction. A gateway block can only be

setup from a master key block. �ere are also special branch in-

struction(s) that allow jump/branching (and linking) from a master

to a non-master block.

Essentially, our capability security model provides a low-cost

means of de-privileging supervisor threads, so that they no longer

have access to the entire memory. In addition to supervisor state, a

hardware thread needs access to the master key for complete access

to all memory blocks in a node. MaKC can be used to implement a

split kernel [27] without relying on expensive hypercalls. �e inner

kernel mapped to key zero blocks and the guard blocks serves as

controlled entry points (APIs) for outer kernels to request services

from the inner kernel. Interrupts are initially received by the inner

kernel and then dispatched to outer kernels.

4.4 Implementation feasibility
It is a challenge to evaluate the feasibility of a system that em-

ploys the MaKC without a concrete implementation. However,

the key concepts in MaKC have been shown to have reasonable

performance overhead in real systems.

Key matching could be implemented with protection tables that

contain BPKs which the hardware can read and cache. �is is sim-

ilar to TLBs and hardware page walking. EPKs and BPKs can be

dynamically checked in hardware a�er physical address compu-

tation, similarly to what happens in today’s systems when they

access memory region descriptors. �is could be integrated with

TLBs. For example, when the last-level TLB misses, hardware also

walks the protection tables and retrieves the keys. If the check

passes, the entry will be cached in the TLB and any subsequent

access will just go through without additional overhead. Otherwise

all TLBs would have to be invalidated.

CHERI showed that the cost and resources required for imple-

menting a hybrid capability system is reasonable and furthermore

maintaining the integrity of capabilities in the processor is feasible.

Most rack-scale systems have some sort of global memory man-

ager so it is straight forward to generate capabilities with unique

keys. Propagating MaKC over the interconnect would increase

network tra�c but we believe that the overhead is reasonable. 2

KiB �xed blocks and a 256-bit MakC protected by 64-bit time-stamp

and 256-bit HMAC will introduce only 32 KiB of additional tra�c

per MiB of memory used. Note that it may be acceptable to use

truncated hash to reduce overhead. We also performed experiments

which showed that generating �ngerprints for in-transit MaKC only

adds 1776 cycles per operation on a Xeon E5v2 processor using

OpenSSL 1.0.2g.

We believe future processors would provide hardware accelera-

tion for HMAC (just as they now provide instructions for hashing)

drastically reducing this overhead further. Alternatively, FPGA’s

coupled (via PCIe) to the main processor could be used to acceler-

ate the generation of HMACs. Processors vendors may soon start

multi-socket processors with an FPGA. Furthermore, some inter-

connects such as Gen-Z [1] can guarantee the integrity of packets

eliminating the need for the in-transit format.
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Figure 5: Comparison of approaches to protection

5 SUMMARY
MaKC is a capability based system to handle authorization and

protection in complex memory hierarchies. Memory authentication

using protection keys and prede�ned entry points using call gates

allows e�cient implementation of enclaves, kernel protection and

virtual machines without the overhead of hypervisor or system calls.

We show an early feasibility study of MaKC using memory and

computation overhead analysis. We believe that MaKC provides the

strong protection and isolation necessary to future rack-scalable

systems, see Tables 1 and 2.

MaCK enables save remapping of memory at lower levels of

the hierarchy by covering the full range from the CPU down to

the memory cells (see Figure 5). Access control is empowered and

characteristics

approach to capability enforcement

memory-side CPU-side

scaling for larger mem for smaller mem.

caching complex straightforward

mem. topol. rack scale/hierar. traditional arch.

mem-centric be�er agnostic

trust data-centric (TOR) node-, OS-centric

perform. be�er for CC FAM be�er for CC DRAM

reliability easier containment easier recovery

revocation easier distr. protocols

Table 1: Comparison of CPU-side vs memory-side

characteristics

approach to protection

MMUs CHERI MaKC

granularity page 1B-AS size 1/N-N pages

hierarchy cover 2 layers virtual AS across layers

scale node single VAS global

meta-data size PTE 128b 256b

revocation N/A no support supported

remapping in 2 layers no yes

Table 2: Comparison of approaches to protection
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enforced by memory-side capabilities and the matching-key checks.

Revoking access to memory resources – a complex operation in

capability systems – is made trivial by simply changing the key. Fur-

thermore, the MaKC approach allows enabling huge pages without

compromising security of small page sizes

Nevertheless, there are challenges that remain. Keys need to be

stored and thus introduce space overhead which is a fraction of the

data space. �is can be optimized by reusing a single key for many

blocks. �e generation of �ngerprints introduces a performance

overhead which can be hidden by pipelining operations. �e use

of MaKC will add some complexity to so�ware. However, CHERI

faces a similar problem and showed that it is possible to abstract

most of it inside libraries. MaKC uses cryptographic keys to ensure

the authenticity of �ngerprints and thus increases the complexity of

security management – there is no free lunch but it can be optional

enhancement

We plan to make MaKC real. First, we are exploring how MaKC

matches the memory protection architecture of future processors.

Once we understand the ISA implications, we will design the micro-

architecture of the MaKC block itself. �is includes enhancing

simulators and exploring prototype FPGA implementations. In

parallel, we are also exploring the needed modi�cations to OS and

toolchains.

Besides the challenges stated above, there are still some open

questions regarding the implementation of MaKC. We will need to

make a design choice on whether to implement which features on

the CPU-side or memory-side. With appropriate hardware support

we have a choice between tagging bits or cryptographic keys for

protecting capabilities. �e block size could be �xed and possibly

aggregated (e.g. cacheline < page < book) or it could be variable

within a certain range. Last but not least, we need to think about

the right abstractions for passing EPKs around as we envision a

rack-scale, CHERI-like capability/pointer to memory resouces.
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chorus distributed operating systems. In Computing Systems (1991), Citeseer.
[33] Shapiro, J. S., Smith, J. M., and Farber, D. J. EROS: A Fast Capability System. In

Proceedings of the Seventeenth ACM Symposium on Operating Systems Principles
(Charleston, South Carolina, USA, 1999), SOSP ’99, ACM, pp. 170–185.

[34] Vilanova, L., Ben-Yehuda, M., Navarro, N., Etsion, Y., and Valero, M.

Codoms: Protecting so�ware with code-centric memory domains. In 2014

123

http://genzconsortium.org/draft-core-specification-december-2016/
http://genzconsortium.org/draft-core-specification-december-2016/
https://lwn.net/Articles/643797
https://lwn.net/Articles/643797
https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-overview-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-single-chip-cloud-overview-paper.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/ rack-scale-architecture/intel-rack-scale-architecture-resources.html
http://www.intel.com/content/www/us/en/architecture-and-technology/ rack-scale-architecture/intel-rack-scale-architecture-resources.html


Separating Translation from Protection
in Address Spaces with Dynamic Remapping HotOS ’17, May 08-10, 2017, Whistler, BC, Canada

ACM/IEEE 41st International Symposium on Computer Architecture (ISCA) (June
2014), pp. 469–480.

[35] Watson, R. N. M., Woodruff, J., Neumann, P. G., Moore, S. W., Anderson,

J., Chisnall, D., Dave, N., Davis, B., Gudka, K., Laurie, B., Murdoch, S. J.,

Norton, R., Roe, M., Son, S., and Vadera, M. CHERI: A Hybrid Capability-

System Architecture for Scalable So�ware Compartmentalization. In 2015 IEEE
Symposium on Security and Privacy (May 2015), pp. 20–37.

[36] Wilkes, J., and Sears, B. A comparison of Protection Lookaside Bu�ers and

the PA-RISC Protection Architecture. Technical Report HPL-92-55, Computer

Systems Laboratory, Hewle�-Packard Laboratories, Palo Alto, CA, USA, March

1992.

[37] Woodruff, J., Watson, R. N., Chisnall, D., Moore, S. W., Anderson, J., Davis,

B., Laurie, B., Neumann, P. G., Norton, R., and Roe, M. �e CHERI Capability

Model: Revisiting RISC in an Age of Risk. In Proceeding of the 41st Annual
International Symposium on Computer Architecuture (Minneapolis, Minnesota,

USA, 2014), ISCA ’14, IEEE Press, pp. 457–468.

124


	1 Introduction
	2 Use Cases
	3 Background
	3.1 MMU-based
	3.2 Hardware Capabilities
	3.3 Memory keys

	4 Matching Key Capabilities (MaKC)
	4.1 Formats
	4.2 Complex memory hierarchies 
	4.3 Supervisor state compartmentalization
	4.4 Implementation feasibility

	5 Summary
	References

